




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、DoingMonteCarloSimulationinMinitabStatisticalSoftwareDoingMonteCarlosimulationsinMinitabStatisticalSoftwareisveryeasy.ThisarticleillustrateshowtouseMinitabforMonteCarlosimulationsusingbothaknownengineeringformulaandaDOEequation.byPaulSheehyandEstonMartzMonteCarlosimulationusesrepeatedrandomsamplingt
2、osimulatedataforagivenmathematicalmodelandevaluatetheoutcome.Thismethodwasinitiallyappliedbackinthe1940s,whenscientistsworkingontheatomicbombusedittocalculatetheprobabilitiesofonefissioninguraniumatomcausingafissionreactioninanother.Withuraniuminshortsupply,therewaslittleroomforexperimentaltrialande
3、rror.Thescientistsdiscoveredthataslongastheycreatedenoughsimulateddata,theycouldcomputereliableprobabilitiesandreducetheamountofuraniumneededfortesting.Today,simulateddataisroutinelyusedinsituationswhereresourcesarelimitedorgatheringrealdatawouldbetooexpensiveorimpractical.ByusingMinitabsabilitytoea
4、silycreaterandomdata,youcanuseMonteCarlosimulationto:Simulatetherangeofpossibleoutcomestoaidindecision-makingForecastfinancialresultsorestimateprojecttimelinesUnderstandthevariabilityinaprocessorsystemFindproblemswithinaprocessorsystemManageriskbyunderstandingcost/benefitrelationshipsStepsintheMonte
5、CarloApproachDependingonthenumberoffactorsinvolved,simulationscanbeverycomplex.Butatabasiclevel,allMonteCarlosimulationshavefoursimplesteps:1.IdentifytheTransferEquationTodoaMonteCarlosimulation,youneedaquantitativemodelofthebusinessactivity,plan,orprocessyouwishtoexplore.Themathematicalexpressionof
6、yourprocessiscalledthe“transferequation.”Thismaybeaknownengineeringorbusinessformula,oritmaybebasedonamodelcreatedfromadesignedexperiment(DOE)orregressionanalysis.2.DefinetheInputParametersForeachfactorinyourtransferequation,determinehowitsdataaredistributed.Someinputsmayfollowthenormaldistribution,
7、whileothersfollowatriangularoruniformdistribution.Youthenneedtodeterminedistributionparametersforeachinput.Forinstance,youwouldneedtospecifythemeanandstandarddeviationforinputsthatfollowanormaldistribution.3.CreateRandomDataTodovalidsimulation,youmustcreateaverylarge,randomdatasetforeachinputsomethi
8、ngontheorder100,000instances.Theserandomdatapointssimulatethevaluesthatwouldbeseenoveralongperiodforeachinput.Minitabcaneasilycreaterandomdatathatfollowalmostanydistributionyouarelikelytoencounter.4.SimulateandAnalyzeProcessOutputWiththesimulateddatainplace,youcanuseyourtransferequationtocalculatesi
9、mulatedoutcomes.Runningalargeenoughquantityofsimulatedinputdatathroughyourmodelwillgiveyouareliableindicationofwhattheprocesswilloutputovertime,giventheanticipatedvariationintheinputs.ThosearethestepsanyMonteCarlosimulationneedstofollow.HereshowtoapplytheminMinitab.MonteCarloUsingaKnownEngineeringFo
10、rmulaAmanufacturingcompanyneedstoevaluatethedesignofaproposedproduct:asmallpistonpumpthatmustpump12mloffluidperminute.Youwanttoestimatetheprobableperformanceoverthousandsofpumps,givennaturalvariationinpistondiameter(D),strokelength(L),andstrokesperminute(RPM).Ideally,thepumpflowacrossthousandsofpump
11、swillhaveastandarddeviationnogreaterthanml.Step1:IdentifytheTransferEquationThefirststepindoingaMonteCarlosimulationistodeterminethetransferequation.Inthiscase,youcansimplyuseanestablishedengineeringformulathatmeasurespumpflow:Flow(inml)=(D/2)2?L?RPMStep2:DefinetheInputParametersNowyoumustdefinethed
12、istributionandparametersofeachinputusedinthetransferequation.Thepumpspistondiameterandstrokelengthareknown,butyoumustcalculatethestrokes-per-minute(RPM)neededtoattainthedesired12ml/minuteflowrate.Volumepumpedperstrokeisgivenbythisequation:(D/2)2*LGivenD=andL=,eachstrokedisplacesml.Sotoachieveaflowof
13、12ml/minutetheRPMis.Basedontheperformanceofotherpumpsyourfacilityhasmanufactured,youcansaythatpistondiameterisnormallydistributedwithameanofcmandastandarddeviationofcm.Strokelengthisnormallydistributedwithameanofcmandastandarddeviationofcm.Finally,strokesperminuteisnormallydistributedwithameanofRPMa
14、ndastandarddeviationofRPM.Step3:CreateRandomDataNowyourereadytosetupthesimulationinMinitab.WithMinitabyoucaninstantaneouslycreate100,000rowsofsimulateddata.Startingwiththesimulatedpistondiameterdata,chooseCalcRandomDataNormal.Inthedialogbox,enter100,000inNumberofrowsofdatatogenerate,andenter“D”asthe
15、columninwhichtostorethedata.Enterthemeanandstandarddeviationforpistondiameterintheappropriatefields.PressOKtopopulatetheworksheetwith100,000datapointsrandomlysampledfromthespecifiednormaldistribution.ThensimplyrepeatthisprocessforStrokeLength(L)andStrokesperMinute(RPM).Step4:SimulateandAnalyzeProces
16、sOutputNowcreateafourthcolumnintheworksheet,Flow,toholdtheresultsofyourprocessoutputcalculations.Withtherandomlygeneratedinputdatainplace,youcansetupMinitabscalculatortocalculatetheoutputandstoreitintheFlowcolumn.GotoCalcCalculator,andsetuptheflowequationlikethis:Minitabwillquicklycalculatetheoutput
17、foreachrowofsimulateddata.Nowyourereadytolookattheresults.SelectStatBasicStatisticsGraphicalSummaryandselecttheFlowcolumn.Minitabwillgenerateagraphicalsummarythatincludesfourgraphs:ahistogramofdatawithanoverlaidnormalcurve,boxplot,andconfidenceintervalsforthemeanandthemedian.Thegraphicalsummaryalsod
18、isplaysAnderson-DarlingNormalityTestresults,descriptivestatistics,andconfidenceintervalsforthemean,median,andstandarddeviation.ThegraphicalsummaryofyourMonteCarlosimulationoutputwilllooklikethis:Fortherandomdatageneratedtowritethisarticle,themeanflowrateisbasedon100,000samples.Onaverage,weareontarge
19、t,butthesmallestvaluewasresultsinastandarddeviationofandthelargestwas.Thatsquitearange.Thetransmittedvariation(ofallcomponents)ml,farexceedingthemltarget.Also,weseethatthemltargetfallsoutsideoftheconfidenceintervalforthestandarddeviation.Itlookslikethispumpdesignexhibitstoomuchvariationandneedstobef
20、urtherrefinedbeforeitgoesintoproduction;MonteCarlosimulationwithMinitabletusfindthatoutwithoutincurringtheexpenseofmanufacturingandtestingthousandsofprototypes.Lestyouwonderwhetherthesesimulatedresultsholdup,tryityourself!Creatingdifferentsetsofsimulatedrandomdatawillresultinminorvariations,buttheen
21、dresultanunacceptableamountofvariationintheflowratewillbeconsistenteverytime.ThatsthepoweroftheMonteCarlomethod.MonteCarloUsingaDOEResponseEquationWhatifyoudontknowwhatequationtouse,oryouaretryingtosimulatetheoutcomeofauniqueprocessAnelectronicsmanufacturerhasassignedyoutoimproveitselectrocleaningop
22、eration,whichpreparesmetalpartsforelectroplating.Electroplatingletsmanufacturerscoatrawmaterialswithalayerofadifferentmetaltoachievedesiredcharacteristics.Platingwillnotadheretoadirtysurface,sothecompanyhasacontinuous-flowelectrocleaningsystemthatconnectstoanautomaticelectroplatingmachine.Aconveyerd
23、ipseachpartintoabathwhichsendsvoltagethroughthepart,cleaningit.InadequatecleaningresultsinahighRootMeanSquareAverageRoughnessvalue,orRMS,andpoorsurfacefinish.ProperlycleanedpartshaveasmoothsurfaceandalowRMS.Tooptimizetheprocess,youcanadjusttwocriticalinputs:voltage(Vdc)andcurrentdensity(ASF).Foryour
24、electrocleaningmethod,thetypicalengineeringlimitsforVdcare3to12volts.Limitsforcurrentdensityare10to150ampspersquarefoot(ASF).Step1:IdentifytheTransferEquationYoucannotuseanestablishedtextbookformulaforthisprocess,butyoucansetupaResponseSurfaceDOEinMinitabtodeterminethetransferequation.Responsesurfac
25、eDOEsareoftenusedtooptimizetheresponsebyfindingthebestsettingsforavitalfewcontrollablefactors.Inthiscase,theresponsewillbethesurfacequalityofpartsaftertheyhavebeencleaned.TocreatearesponsesurfaceexperimentinMinitab,chooseStatDOEResponseSurfaceCreateResponseSurfaceDesign.Becausewehavetwofactorsdesign
26、,whichhas13runs.voltage(Vdc)andcurrentdensity(ASF)wellselectatwo-factorcentralcompositeAfterMinitabcreatesyourdesignedexperiment,youneedtoperformyour13experimentalruns,collectthedata,andrecordthesurfaceroughnessofthe13finishedparts.MinitabmakesiteasytoanalyzetheDOEresults,reducethemodel,andcheckassu
27、mptionsusingresidualplots.UsingthefinalmodelandMinitabyourvariables.Inthiscase,yousetvoltstosresponseoptimizer,youcanfindtheoptimumsettingsforandASFtotoobtainaroughnessvalueof.TheresponsesurfaceDOEyieldsthefollowingtransferequationfortheMonteCarlosimulation:22Roughness=?(Vdc)?(ASF)+(Vdc)+(ASF)Step2:
28、DefinetheInputParametersNowyoucansettheparametricdefinitionsforyourMonteCarlosimulationinputs.(Thestandarddeviationsmustbeknownorestimatedbasedonexistingprocessknowledge.)VoltsarenormallydistributedwithameanofVdcandastandarddeviationofVdc.AmpsperSquareFoot(ASF)arenormallydistributedwithameanofASFandastandarddeviationof3ASF.Step3:CreateRandomDataWiththeparametersdefined,itRandomDataNormalssimpletocreate100,000rowsofsimulateddataforourtwoinputsusingMinitabdialog.sCalcStep4:SimulateandAnalyzeProcessOutputNowwecanusetheCalculatortoenterourformula,followedbyStatB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省武汉市新洲区2025届高二化学第二学期期末考试模拟试题含解析
- 广东省佛山市莘村中学2025届高二化学第二学期期末监测试题含解析
- 中国戊二酸行业市场调查报告
- 保健棉裤项目投资可行性研究分析报告(2024-2030版)
- 中国铁素体不锈钢行业调查报告
- 2025年中国水海产品行业市场前景预测及投资方向研究报告
- 2025年中国双面油石行业市场发展前景及发展趋势与投资战略研究报告
- 湖北省随州一中2025届高一下化学期末经典试题含解析
- 2024年中国塑胶跑道行业市场调查报告
- 中国大型离心泵行业市场全景监测及投资前景展望报告
- 大庆护理面试题及答案
- 南京师范大学古代汉语教案
- 马工程西方经济学(精要本第三版)教案
- 引水隧洞工程安全施工方案
- 2025年麻风病防治知识竞赛复习试题库完整
- 2025浙江高考:历史必考知识点归纳
- 食品安全员培训大纲
- 运营酒店公寓管理制度
- DB32T 5082-2025建筑工程消防施工质量验收标准
- 2025年高中语文必修下文言文《谏逐客书》知识点梳理
- 2025-2030全球及中国牙科保险服务行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论