广西壮族自治区钦州市浦北县2023学年数学九上期末监测试题含解析_第1页
广西壮族自治区钦州市浦北县2023学年数学九上期末监测试题含解析_第2页
广西壮族自治区钦州市浦北县2023学年数学九上期末监测试题含解析_第3页
广西壮族自治区钦州市浦北县2023学年数学九上期末监测试题含解析_第4页
广西壮族自治区钦州市浦北县2023学年数学九上期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每小题3分,共30分)1投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()Ap一定等于Bp一定不等于C多投一次,p更接近D投掷次数逐步增加,p稳定在附近2圆锥的底面半径是,母线为,则它的侧面积是( )ABCD3如图是半径为2的O的内接正六边形ABCDEF,则圆心O到边AB的距离是()A2B1CD4为了美化校园环境,加大校园绿化投资某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A18(1+2x)33B18(1+x2)33C18(1+x)233D18(1+x)+18(1+x)2335小悦乘座中国最高的摩

3、天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画经测试得出部分数据如表根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是( )x(分)13.514.716.0y(米)156.25159.85158.33A32分B30分C15分D13分6在-2,-1,0,1这四个数中,最小的数是( )A-2B-1C0D17方程的两根分别为( )A1,2B1,2Cl,2D1,28如图,AB是O的弦,ODAB于D交O于E,则下列说法错误的是( )AAD=BDBACB=AOEC弧AE=弧BEDOD=DE9若正六边形的边长为6,则其外接圆半径为(

4、 )A3B3C3D610将二次函数 通过配方可化为 的形式,结果为( )ABCD二、填空题(每小题3分,共24分)11如图,AB是的直径,BC与相切于点B,AC交于点D,若ACB=50,则BOD=_度12一元二次方程x25x=0的两根为_13如图所示,某河堤的横断面是梯形,迎水坡长26米,且斜坡的坡度为,则河堤的高为 米14一元二次方程的根是_15已知二次函数的图象经过点,的横坐标分别为,点的位置随的变化而变化,若运动的路线与轴分别相交于点,且(为常数),则线段的长度为_.16如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧已知每个台阶宽度为32cm(即相邻两弧半径相差

5、32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为_cm17在RtABC中,AC:BC1:2,则sinB_.18如图,ABC是不等边三角形,DEBC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与ABC全等,这样的三角形最多可以画出_个三、解答题(共66分)19(10分)如图,抛物线yax2+x+c(a0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(1,0),点C的坐标为(0,2)(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,

6、请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标20(6分)先化简,再求值:,其中x满足x2x1=121(6分)解方程: -2(x+1)=322(8分) “低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具某运动商城的自行车销售量自年起逐月增加,据统计该商城月份销售自行车辆,月份销售了辆(1)求这个运动商城这两个月的月平均增长率是多少?(2)若该商城前个月的自行车销量的月平均增长率相同,问该商城月份卖出多少辆自行车?23(8分)如图,河的两岸MN与PQ相互平行

7、,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,测得CBQ=60,求这条河的宽是多少米?(结果精确到0.1米,参考数据1.414,1.732)24(8分)如图,在平面直角坐标系中,顶点为(11,)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,8)(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与C有怎样的位置关系,并给出证明;(3)连接AC,在抛物线上是否存在一点

8、P,使ACP是以AC为直角边的直角三角形,若存在,请直接写出点P的坐标,若不存在,请说明理由25(10分)某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.26(10分)如图,在平面直角坐标系中,矩形的顶点,的坐标分别,以为顶点的抛物线过点动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点设点运动的时间为(秒)(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点若以,为顶点的四边形为菱形,求的值 参考答案一、选择题(每小题3分

9、,共30分)1、D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近故选:D【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率注意随机事件可能发生,也可能不发生2、A【分析】根据圆锥的侧面积底面周长母线长计算【详解】圆锥的侧面面积6515cm1故选:A【点睛】本题考查圆锥的侧面积底面周长母线长,解题的关键是熟知公式的运用.3、C【分析】过O作OHAB于H,根据正六边形ABCDEF的性质得到AOB60,根据等腰三角形的性质得到AOH30,AHAB1,于是得

10、到结论【详解】解:过O作OHAB于H,在正六边形ABCDEF中,AOB60,OAOB,AOH30,AHAB1,OHAH,故选:C【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键4、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决【详解】由题意可得,18(1+x)233,故选:C【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题5、B【分析】利用二次函数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案【详解】最值在自变量大于14.7小于16.0

11、之间,所以最接近摩天轮转一圈的时间的是30分钟故选:B【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题6、A【解析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【详解】解:在、这四个数中,大小顺序为:,所以最小的数是.故选A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.7、D【解析】(x1)(x1)=0,可化为:x1=0或x1=0,解得:x1=1,x1=1故选D8、D【解析】由垂径定理和圆周角定理可证,ADBD,ADBD,AEBE,而点D不一定是OE的中点,故D错误【详解】ODAB,由垂径定理知,点D是AB的中

12、点,有ADBD,,AOB是等腰三角形,OD是AOB的平分线,有AOE12AOB,由圆周角定理知,C12AOB,ACBAOE,故A、 B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.9、D【分析】连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径【详解】如图为正六边形的外接圆,ABCDEF是正六边形,AOF=10, OA=OF, AOF是等边三角形,OA=AF=1.所以正六边形的外接圆半径等于边长,即其外接圆半径为1故选D【点睛】本题考查了正六边形

13、的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.10、A【分析】根据完全平方公式:配方即可【详解】解:=故选A【点睛】此题考查的是利用配方法将二次函数的一般式化为顶点式,掌握完全平方公式是解决此题的关键二、填空题(每小题3分,共24分)11、80【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】解:BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键12、0或5【解析】分析:本题考查的是一元二次方程的解法因式分解

14、法.解析: 故答案为0或5.13、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在RtABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米)考点:解直角三角形的应用14、【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可【详解】解:或,所以故答案为【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法15、27【分析】先求得点M和点N的纵坐标,于是得到点M和点N运动的路线与字母b的函数关系式,则点A的坐标为(

15、0,) ,点B的坐标为(0,) ,于是可得到的长度【详解】过点M、N,且即,点A在y轴上,即,把代入,得:,点A的坐标为(0,) ,点B在y轴上,即,把代入,得:,点B的坐标为(0,) ,故答案为:【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,正确理解题意、求得点A和点B的坐标是解题的关键16、1【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答【详解】解:设弧AB所在的圆的半径为r,如图作OEAB于E,连接OA,OC,则OA=r,OC=r+32, OEAB,AE=EB=100cm,在RTOAE

16、中,在RTOCE中,则 解得:r=1故答案为:1【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题17、或【分析】根据可知,因此分和两种情况讨论,当时,;当时,利用勾股定理求出斜边AB,再由即可得.【详解】(1)当时,BC为斜边,AC为所对的直角边则(2)当时,AB为斜边,AC为所对的直角边设,则由勾股定理得:则综上,答案为或.【点睛】本题考查了直角三角形中锐角三角函数,熟记锐角三角函数的计算方法是解题关键.18、4【解析】试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆两圆相交于两点(DE上下各一个),分别于D、E连

17、接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形因此最多能画出4个考点:作图题三、解答题(共66分)19、(1)yx2+x+2(2)(,4)或(,)或(,)(3)(2,1)【解析】(1)利用待定系数法转化为解方程组即可(2)如图1中,分两种情形讨论当CPCD时,当DPDC时,分别求出点P坐标即可(3)如图2中,作CMEF于M,设则(0a4),根据S四边形CDBFSBCD+SCEF+SBEF构建二次函数,利用二次函数的性质即可解决问题【详解】解:(1)由题意 解得 二次函数的解析式为 (2)存在如

18、图1中,C(0,2), CD 当CPCD时, 当DPDC时, 综上所述,满足条件的点P坐标为或或(3)如图2中,作CMEF于M,B(4,0),C(0,2),直线BC的解析式为设 (0a4),S四边形CDBFSBCD+SCEF+SBEF , a2时,四边形CDBF的面积最大,最大值为,E(2,1)【点睛】本题考查二次函数综合题、一次函数的应用、待定系数法,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,属于中考压轴题20、2【分析】根据分式的运算法则进行计算化简,再将x2=x+2代入即可.【详解】解:原式=,x2x2=2,x2=x+2,=221、【分析

19、】先将 -2(x+1)=3化成 -2(x+1)-3=0,再将x+1当作一个整体运用因式分解法求出x+1,最后求出x【详解】解: -2(x+1)=3化成 -2(x+1)-3=0(x+1-3)(x+1+1)=0 x+1-3=0或x+1+1=0【点睛】本题考查了一元二次方程的解法,掌握整体换元法是解答本题的关键22、(1)该商城2、3月份的月平均增长率为25%;(2)商城4月份卖出125辆自行车【分析】(1)根据题意列方程求解即可(2)三月份的销量乘以(1+月平均增长率),即可求出四月份的销量【详解】解:(1)设该商城2、3月份的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得,x1

20、=-225%(不合题意,舍去),x2=25%答:该商城2、3月份的月平均增长率为25%(2)四月份的销量为:100(1+25%)=125(辆)答:商城4月份卖出125辆自行车【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键23、17.3米.【解析】分析:过点C作于D,根据,得到 ,在中,解三角形即可得到河的宽度.详解:过点C作于D, 米,在中, 米,米答:这条河的宽是米点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.24、(1);(2)对称轴l与C相交,见解析;(3)P(30,2)或(41,100)【分析】(1)已知抛物线的顶点坐标,可用顶点

21、式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)分ACP90、CAP90两种情况,分别求解即可【详解】解:(1)设抛物线为ya(x11)2,抛物线经过点A(0,8),8a(011)2,解得a,抛物线为y;(2)设C与BD相切于点E,连接CE,则BECAOB90y0时,x111,x21A(0,8)、B(1,0)、C(11,0),OA8,OB1,OC11,BC10;AB10,ABBCABBD,ABCEBC+90OAB+90,EBCOAB,OABEBC(AAS),OBEC1设抛物线对称轴交x轴于Fx11,F(11,0),CF111151,对称轴l与C相交;(3)由点A、C的坐标得:直线AC的表达式为:yx+8,当ACP90时,则直线CP的表达式为:y2x32,联立直线和抛物线方程得,解得:x30或11(舍去),故点P(30,2);当CAP90时,同理可得:点P(41,100),综上,点P(30,2)或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论