2023学年天津市津南区名校数学九上期末学业质量监测模拟试题含解析_第1页
2023学年天津市津南区名校数学九上期末学业质量监测模拟试题含解析_第2页
2023学年天津市津南区名校数学九上期末学业质量监测模拟试题含解析_第3页
2023学年天津市津南区名校数学九上期末学业质量监测模拟试题含解析_第4页
2023学年天津市津南区名校数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1如图,在矩形中,垂足为,设,且,则的长为( )A3BCD2微信

2、红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x,根据题意可列方程为( )A363(1+2x)=300B300(1+x2)=363C300(1+x)2=363D300+x2=3633把二次函数y=2x2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )ABCD4如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()ABCD5下列是世界各国银行的图标,其中不是轴对称图形的是( )ABCD6如图,D,E分别是ABC的边AB,AC上的中点,CD与B

3、E交于点O,则SDOE:SBOC的值为()ABCD7抛物线与y轴的交点坐标是( )A(4,0)B(-4,0)C(0,-4)D(0,4)8下列计算正确的是()A3x2x1Bx2+x5x7Cx2x4x6D(xy)4xy49等腰三角形底角与顶角之间的函数关系是()A正比例函数B一次函数C反比例函数D二次函数10如图,双曲线与直线相交于、两点,点坐标为,则点坐标为( )ABCD11如图,在O中,ABOC,垂足为点D,AB8,CD2,若点P是优弧上的任意一点,则sinAPB()ABCD12已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在( )A第一、二象限B第一、三象限C第二、四象限D第三

4、、四象限二、填空题(每题4分,共24分)13在一个不透明的袋子中只装有n个白球和4个红球,这些球除颜色外其他均相同如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为_14如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(1,2),B(1,2)两点,若y1y2,则x的取值范围是_15抛物线的顶点坐标为_.16如图,的半径为,双曲线的关系式分别为和,则阴影部分的面积是_17光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上

5、物块,图是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于_. 18如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_度三、解答题(共78分)19(8分)计算:3tan30 tan45+ 2sin6020(8分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使ACM的周长最小?若存在,请求出点M的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时点21(8分)中华人民共和国城市道路路内停车泊位设置规范规定:米以

6、上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊位;米,车位宽米;米.根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:(1)可在该道路两侧设置停车泊位的排列方式为 ;(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.(参考数据:,)22(10分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售(1)求平均每次下调的

7、百分率(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:打折销售;不打折,一次性送装修费每平方米元试问哪种方案更优惠?23(10分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求处恰好抽到“器乐”和“戏曲

8、”类的概率(书画、器乐、戏曲、棋类可分别用字幕表示)24(10分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,ACB=90,BAC=30,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示求证:EF平分AEC;求EF的长25(12分)在大课间活动中,体育老师随机抽取了九年级甲、乙两班部分女生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和频数直方图,请你根据图表中的信息完成下列问题

9、:(1)频数分布表中a= ,b= ;(2)将频数直方图补充完整;(3)如果该校九年级共有女生360人,估计仰卧起坐能够一分钟完成30次或30次以上的女学生有多少人?(4)已知第一组有两名甲班学生,第四组中只有一名乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?26如图,AB是O的直径,弦CDAB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD(1)求证:FGCAGD;(2)若AD1当ACDG,CG2时,求sinADG;当四边形ADCG面积最大时,求CF的长参考答案一、选择题(每题4分,共48分)1、C【分析】根据同角的余

10、角相等求出ADE=ACD,再根据两直线平行,内错角相等可得BAC=ACD,然后求出AC【详解】解:DEAC,ADE+CAD=90,ACD+CAD=90,ACD=ADE=,矩形ABCD的对边ABCD,BAC=ACD,cos=,AC=故选:C【点睛】本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC是解题的关键2、C【分析】这两年小明收到的微信红包的年平均增长率为x,则2017年收到300(1+x),2018年收到300(1+x)2,根据题意列方程解答即可【详解】由题意可得,300(1+x)2=363.故选C.【点睛】本题考查了一元二次方程的应用-增长率

11、问题;本题的关键是掌握增长率问题中的一般公式为a(1+x)n=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率3、A【解析】将二次函数的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:.故选A.4、C【解析】设圆的半径为,连接,求出,根据CAAB,求出,即可求出函数的解析式为.【详解】设:圆的半径为,连接,则,即是圆的切线,则,则则图象为开口向下的抛物线,故选:【点睛】本题考查了圆、三角函数的应用,熟练掌握函数图像是解题的关键.5、D【解析】本题考查的是轴对称图形的定义把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形A、B、C都可以,而D不行,

12、所以D选项正确6、C【分析】DE为ABC的中位线,则DEBC,DEBC,再证明ODEOCB,由相似三角形的性质即可得到结论【详解】解:点D、E分别为AB、AC的中点,DE为ABC的中位线,DEBC,DEBC,ODEOCB,OEDOBC,ODEOCB,故选:C【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键7、D【解析】试题分析:求图象与y轴的交点坐标,令x=0,求y即可当x=0时,y=4,所以y轴的交点坐标是(0,4)故选D考点:二次函数图象上点的坐标特征8、C【分析】分别根据合并同类项的法则,同底数幂的乘法法则,幂的乘方与积的乘方逐一判断即

13、可【详解】解:3x2xx,故选项A不合题意;x2与x5不是同类项,故不能合并,故选项B不合题意;x2x4x6,正确,故选项C符合题意;,故选项D不合题意故选:C【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟练掌握运算法则是解答本题的关键9、B【解析】根据一次函数的定义,可得答案【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=x+90,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.10、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两

14、个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.11、B【分析】如图,连接OA,OB设OAOBx利用勾股定理构建方程求出x,再证明APBAOD即可解决问题【详解】如图,连接OA,OB设OAOBxOCAB,ADDB4,在RtAOD中,则有x242+(x2)2,x5,OAOB,ODAB,AODBOD,APBAOBAOD,sinAPBsinAOD,故选:B【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识12、B【详解】解:将点(m,3m

15、)代入反比例函数得,k=m3m=3m20;故函数在第一、三象限,故选B二、填空题(每题4分,共24分)13、1【分析】根据概率公式列方程计算即可.【详解】解:根据题意得 ,解得n1,经检验:n41是分式方程的解,故答案为:1【点睛】题考查了概率公式的运用,理解用可能出现的结果数除以所有可能出现的结果数是解答本题的关键.14、x2或0 x2【解析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:当x2时,y2y2;当2x0时,y2y2;当0 x2时,y2y2;当x2

16、时,y2y2综上所述:若y2y2,则x的取值范围是x2或0 x2故答案为x2或0 x2【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.15、【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.16、2【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案【详解】解:双曲线和的图象关于x轴对称,根据图形的对称性,把第三象限

17、和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180,半径为2,所以S阴影故答案为:2【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180,半径为2的扇形的面积,这是解题的关键17、【分析】过D作GHAB于点H,利用勾股定理求出BD和CD,再分别求出入射角PDG和折射角CDH的正弦值,根据公式可得到折射率.【详解】如图,过D作GHAB于点H,在RtBDF中,BF=12cm,DF=16cmBD=cm四边形BFDH为矩形,BH=DF=16cm,DH=BF

18、=12cm又BC=7cmCH=BH-BC=9cmCD=cm入射角为PDG,sinPDG=sinBDH=折射角为CDH,sinCDH=折射率故答案为:.【点睛】本题主要考查了勾股定理和求正弦值,解题的关键是找出图中的入射角与折射角,并计算出正弦值.18、1【分析】直接利用扇形弧长公式代入求出即可【详解】解:扇形的半径是1,弧长是,即,解得:,此扇形所对的圆心角为:故答案为:1【点睛】此题主要考查了弧长公式的应用,正确利用弧长公式是解题关键三、解答题(共78分)19、【分析】先计算出特殊的三角函数值,按照运算顺序计算即可.【详解】解:原式.【点睛】本题主要考查特殊锐角的三角函数值,解题的关键是熟记

19、特殊锐角的三角函数值20、(1)y=x22x1;(2)存在;M(1,2);(1)(1+22,4)或(122 ,4)或(1,4).【解析】(1)由于抛物线y=x2+bx+c与x轴交于A(-1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=-1或x=1,然后利用根与系数即可确定b、c的值;(2)点B是点A关于抛物线对称轴的对称点,在抛物线的对称轴上有一点M,要使MA+MC的值最小,则点M就是BC与抛物线对称轴的交点,利用待定系数法求出直线BC的解析式,把抛物线对称轴x=1代入即可得到点M的坐标;(1)根据SPAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的

20、坐标【详解】(1)抛物线y=x2+bx+c与x轴交于A(1,0),B(1,0)两点,方程x2+bx+c=0的两根为x=1或x=1,1+1=b,11=c,b=2,c=1,二次函数解析式是y=x22x1(2)点A、B关于对称轴对称,点M为BC与对称轴的交点时,MA+MC的值最小,设直线BC的解析式为y=kx+t(k0),则3k+t=0t=-3,解得:k=1直线AC的解析式为y=x1,抛物线的对称轴为直线x=1,当x=1时,y=2,抛物线对称轴上存在点M(1,2)符合题意;(1)设P的纵坐标为|yP|,SPAB=2,12AB|yPAB=1+1=4,|yP|=4,yP=4,把yP=4代入解析式得,4=

21、x22x1,解得,x=122,把yP=4代入解析式得,4=x22x1,解得,x=1,点P在该抛物线上滑动到(1+22,4)或(122,4)或(1,4)时,满足SPAB=2【点睛】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴上点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题21、(1)平行式或倾斜式(2)1【分析】(1)对应三种方式分别验证是否合适即可;(2)分别按照第(1)问选出来的排列方式计算停车泊位,进行比较取较大者即可.【详解】(1)除去两车道之后道路宽 因为要在道路两旁设置停车泊位,所以

22、每个停车泊位的宽必须小于等于3m,所以方式3垂直式不合适,排除;方式1平行式满足要求,对于房市,它的宽度为,要满足要求,必须有,即,所以当时,方式2倾斜式也能满足要求.故答案为平行式或倾斜式(2)若选择平行式,则可设置停车泊位的数量为(个)若选择倾斜式,每个停车泊位的宽度为 ,要使停车泊位尽可能多,就要使宽度尽可能小,所以取,此时每个停车位的宽度为 ,所以可设置停车泊位的数量为(个)故答案为1【点睛】本题主要考查理解能力以及锐角三角函数的应用,掌握锐角三角函数的定义是解题的关键.22、(1)10%;(2)选择方案更优惠【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平

23、米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出(2)对于方案的确定,可以通过比较两种方案得出的费用:方案:下调后的均价两年物业管理费方案:下调后的均价,比较确定出更优惠的方案【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去)答:平均每次降价的百分率为(2)方案购房优惠:4050120(1-0.98)=9720(元)方案购房优惠:70120=8400(元)9720(元)8400(元)答:选择方案更优惠【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键23、(1)(人);(2)详见解析;(3)

24、【解析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可【详解】解:(1)本次随机调查的学生人数为(人);(2)书画的人数为(人),戏曲的人数为(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为(人);(4)列表得: 共有种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,恰好抽到“器乐”和“戏曲”类的概率为【点睛】本题考查的是用列表法或画树状图法求概率的知识解题关键在于注意

25、概率所求情况数与总情况数之比24、(1)2s(2)证明见解析,【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)连接OF,由AC与半圆相切于点F,易得OFAC,然后由ACB=90,易得OFCE,继而证得EF平分AEC;由AFO是直角三角形,BAC=30,OF=OD=3cm,可求得AF的长,由EF平分AEC,易证得AFE是等腰三角形,且AF=EF,则可求得答案试题解析:(1)当点B于点O重合的时候,BO=OD+BD=4cm,t=42=2(s);三角板运动的时间为:2s;(2)证明:连接O与切点F,则O

26、FAC,ACE=90,ECAC,OFCE,OFE=CEF,OF=OE,OFE=OEF,OEF=CEF,即EF平分AEC;由知:OFAC,AFO是直角三角形,BAC=30,OF=OD=3cm,tan30=3AF,AF=3cm,由知:EF平分AEC,AEF=CEF=AEC=30,AEF=EAF,AFE是等腰三角形,且AF=EF,EF=3cm.25、(1)0.3,4;(2)见解析;(3)198;(4).【分析】(1)由第一组的频数和频率得到总人数,乘以0.2即可得b的值,用10.150.350.20可得a的值;(2)根据表格中第二组的数据将直方图补充完整;(3)利用样本估计总体的知识求解即可得答案;(4)首先根据题意画出树状图,然后由树状图得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求答案【详解】解:(1)a=10.150.350.20=0.3;总人数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论