




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1下列事件中,必然事件是()A任意掷一枚均匀的硬币,正面朝上B从一副扑克牌中,随意抽出一张是大王C通常情况下,抛出的篮球会下落D三角形内角和为3602如图,在正方形中,点是对角线的交点,过
2、点作射线分别交于点,且,交于点给出下列结论:;C;四边形的面积为正方形面积的;其中正确的是()ABCD3已知函数的图象经过点(2, 3 ),下列说法正确的是( )Ay随x的增大而增大B函数的图象只在第一象限C当x0时,必y0D点(-2, -3)不在此函数的图象上4关于x的一元二次方程x23x+m0有两个不相等的实数根,则实数m的取值范围为()AmBmCmDm5如图,ABC中,DEBC,BE与CD交于点O,AO与DE,BC交于点N、M,则下列式子中错误的是( )ABCD6如图,内接于圆,若,则弧的长为( )ABCD7若关于的方程,它的一根为3,则另一根为( )A3BCD8方程的根是( )A2B0
3、C0或2D0或39九章算术中有一题“今有勾八步,股十五步,问勾中容圆径几何? ”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是( ) A步B步C步D步10如图,已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A、B恰好同时落在反比例函数(x0)的图象上,则等于( )A3B4C5D611在中,若已知,则( )ABCD12已知x1是方程x2+m0的一个根,则m的值是( )A1B1C2D2二、填空题(每题4分,共24分)13如图,ABC绕点B逆时针方向旋转到EBD的位置,A=20,C=15,E、B、C在同
4、一直线上,则旋转角度是_14如图,四边形是的内接四边形,若,则的大小为_15如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_16(2016辽宁省沈阳市)如图,在RtABC中,A=90,AB=AC,BC=20,DE是ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O若OMN是直角三角形,则DO的长是_17若关于的一元二次方程有实数根,则的取值范围是_18若菱形的两条对角线长分别是6和8,则该菱形的面积是 1三、解答题(共78分)19(8分)已知关于x的一元二次方程x2+(2k+1)x+k20有实数根(1)求
5、k的取值范围(2)设方程的两个实数根分别为x1、x2,若2x1x2x1x21,求k的值20(8分)如图,ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC, 联结BD、CD,BD交直线AC于点E.(1)当CAD=90时,求线段AE的长. (2)过点A作AHCD,垂足为点H,直线AH交BD于点F,当CAD120时,设,(其中表示BCE的面积,表示AEF的面积),求y关于x的函数关系式,并写出x的取值范围; 当时,请直接写出线段AE的长.21(8分)已知关于x的一元二次方程x22x+m=0有两个不相等的实数根(1)求实数m的最大整数值;(2)在(1)的条件下,方程的实数根
6、是、,求代数式的值22(10分)已知二次函数y=a4x+c的图象过点(1,0)和点(2,9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),23(10分)如图,四边形ABCD的三个顶点A、B、D在O上,BC经过圆心O,且交O于点E,A120,C30(1)求证:CD是O的切线(2)若CD6,求BC的长(3)若O的半径为4,则四边形ABCD的最大面积为 24(10分)为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:使用次数05101520人数11431(1)这10位
7、居民一周内使用共享单车次数的中位数是 次,众数是 次(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 (填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数25(12分)如图,在矩形ABCD中,BC60cm动点P以6cm/s的速度在矩形ABCD的边上沿AD的方向匀速运动,动点Q在矩形ABCD的边上沿ABC的方向匀速运动P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动设运动的时间为t(s),PDQ的面积为S(cm2),S与t的函数图象如图所示(1)AB cm,点Q的运动速度为 cm/s;(2)在
8、点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的O始终与边AD、BC相切,当点P到达终点D时,运动同时停止当点O在QD上时,求t的值;当PQ与O有公共点时,求t的取值范围26超市销售某种儿童玩具,该玩具的进价为100元/件,市场管理部门规定,该种玩具每件利润不能超过进价的60%.现在超市的销售单价为140元,每天可售出50件,根据市场调查发现,如果销售单价每上涨2元,每天销售量会减少1件。设上涨后的销售单价为x元,每天售出y件.(1)请写出y与x之间的函数表达式并写出x的取值范围;(2)设超市每天销售这种玩具可获利w元,当x为多少元时
9、w最大,最大为名少元?参考答案一、选择题(每题4分,共48分)1、C【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】任意掷一枚均匀的硬币,正面朝上是随机事件;从一副扑克牌中,随意抽出一张是大王是随机事件;通常情况下,抛出的篮球会下落是必然事件;三角形内角和为360是不可能事件,故选C.【点睛】本题考查随机事件.2、B【分析】根据全等三角形的判定(ASA)即可得到正确;根据相似三角形的判定可得正确;根据全等三角形的性质可得正确;根据相似三角形的性质和判定、勾股定理,即可得到答案.【详解】解:四边形是正方形,故正确;,点四点共圆,故正确;, ,故正确;,又,是等腰直角三角形,又中,故
10、错误,故选【点睛】本题考查全等三角形的判定(ASA)和性质、相似三角形的性质和判定、勾股定理,解题的关键是掌握全等三角形的判定(ASA)和性质、相似三角形的性质和判定.3、C【解析】图象经过点(2,3),k=23=60,图象在第一、三象限只有C正确故选C4、B【解析】试题解析:关于x的一元二次方程有两个不相等的实数根, 故选B.5、D【解析】试题分析:DEBC,ADNABM,ADEABC,DOECOB, ,所以A、B、C正确;DEBC,AENACM,所以D错误故选D点睛:本题考查了相似三角形的判定与性质注意平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;相似三角形对应边成
11、比例注意数形结合思想的应用6、A【分析】连接OB,OC首先证明OBC是等腰直角三角形,求出OB即可解决问题【详解】连接OB,OCA=180-ABC-ACB=180-65-70=45,BOC=90,BC=2,OB=OC=2,的长为=,故选A【点睛】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识7、C【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可【详解】设方程的另一根为t,根据题意得:3+t=2,解得:t=-1,即方程的另一根为-1故选:C【点睛】本题主要考查了一元二次方程根与系数的关系:是一元二次方程的两根时,8
12、、D【分析】先把右边的x移到左边,然后再利用因式分解法解出x即可.【详解】解:故选D.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法是解决本题的关键.9、A【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径,进而得出直径.【详解】根据勾股定理,得斜边为,则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故答案为A.【点睛】此题主要考查了三角形的内切圆与内心,熟练掌握,即可解题.10、D【分析】根据点平移规律,得到点A平移后的点的坐标为(2,3),由此计算k值.【详解】已知A(-3,3),B(-1,1.5),将线段AB向右平移5个单位长度后,点A平移后的点
13、坐标为(2,3),点A、B恰好同时落在反比例函数(x0)的图象上,故选:D.【点睛】此题考查点平移的规律,点沿着x轴左右平移的规律是:左减右加;点沿着y轴上下平移的规律是:上加下减,熟记规律是解题的关键.11、B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解【详解】解:在中,设BC=3x,则AC=4x,根据勾股定理可得:,.故选:B.【点睛】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值12、A【分析】把x=1代入方程,然后解一元一次方程即可
14、【详解】把x=1代入方程得:1+m=0,解得:m=1故选A【点睛】本题考查了一元二次方程的解掌握一元二次方程的解的定义是解答本题的关键二、填空题(每题4分,共24分)13、35【分析】根据旋转角度的概念可得ABE为旋转角度,然后根据三角形外角的性质可进行求解【详解】解:由题意得:ABE为旋转角度,A=20,C=15,E、B、C在同一直线上,ABE=A+C=35;故答案为35【点睛】本题主要考查旋转及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键14、100【分析】根据圆内接四边形的性质求出D的度数,根据圆周角定理计算即可【详解】四边形ABCD是O的内接四边形,B+D=180
15、,D=180-130=50,由圆周角定理得,AOC=2D=100,故答案是:100【点睛】考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键15、【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】共个数,大于的数有个,(大于);故答案为【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= 16、或【解析】由图可知,在OMN中,OMN的度数是一个定值,且OMN不为直角. 故当ONM
16、=90或MON=90时,OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当ONM=90时,则DNBC.过点E作EFBC,垂足为F.(如图)在RtABC中,A=90,AB=AC,C=45,BC=20,在RtABC中,DE是ABC的中位线,在RtCFE中,.BM=3,BC=20,FC=5,MF=BC-BM-FC=20-3-5=12.EF=5,MF=12,在RtMFE中,DE是ABC的中位线,BC=20,DEBC,DEM=EMF,即DEO=EMF,在RtODE中,.(2) 当MON=90时,则DNME.过点E作EFBC,垂足为F.(如图)EF=5,MF=12,在RtMFE中,在R
17、tMFE中,DEO=EMF,DE=10,在RtDOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.17、且k1【分析】根据一元二次方程的定义和判别式的意义得到且,然后求出两个不等式的公共部分即可【详解】解:根据题意得且,解得:且k1故答案是:且k1【点睛】本题考查了一元二次方程ax2+bx+c=1(a1)的根的判别式=b2-4ac:当1,方程有两个不相
18、等的实数根;当=1,方程有两个相等的实数根;当1,方程没有实数根18、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积,根据S=ab=68=14cm1,故答案为14三、解答题(共78分)19、(1);(2)k1【分析】(1)由1,求出k的范围;(2)由根与系数的关系可知:x1+x22k1,x1x2k2,代入等式求解即可【详解】解:(1)一元二次方程x2+(2k+1)x+k21有实数根,(2k+1)24k21,;(2)由根与系数的关系可知:x1+x22k1,x1x2k2,2x1x2x1x22k2+2k+11,k1或k1,;k1【点睛】本题
19、考查根与系数的关系;熟练掌握一元二次方程根与系数的关系,并能用判别式判断根的存在情况是解题的关键20、(1)(2) ();(3)或【分析】(1)过点作,垂足为点,则根据构建方程求出即可解决问题(2)证明,可得,由此构建关系式即可解决问题分两种情形:当时,当时,分别求解即可解决问题【详解】解:(1)是等边三角形,过点作,垂足为点设,则在中,在中,解得所以线段的长是(2)设,则,又,又,由(1)得在中,当时,则有,整理得,解得或(舍弃),当时,同法可得当时,整理得,解得(舍弃)或1,综上所述:当CAD120时,; 当120CAD180时,.【点睛】本题属于三角形综合题,考查了等边三角形的性质,解直
20、角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型21、(1)1;(2)1【分析】(1)根据一元二次方程有两不相等的实数根,则根的判别式=b2-4ac0,建立关于m的不等式,求出m的取值范围,进而得出m的最大整数值;(2)把m=1代入x22x+m=0,根据根与系数的关系可得出x1+x2,x1x2的值,由=(x1+x2)23x1x2,最后将x1+x2,x1x2的值代入即可得出结果【详解】解:(1)由题意,得0,即0,解得m2,m的最大整数值为1;(2)把m=1代入x22x+m=0得,x22x+1=0,根据根与系数的关系
21、得,x1+x2 =2,x1x2=1,=(x1+x2)23x1x2=(2)231=1【点睛】此题考查了一元二次方程根的情况与判别式的关系以及根与系数的关系根的情况与判别式的关系如下:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根根与系数的关系如下:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根,则x1+x2=-,x1x2=22、(1),;(2)当x或x5时,函数值大于1【分析】(1)把(-1,1)和点(2,-9)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与
22、x轴的交点坐标后即可确定正确的答案【详解】解:(1)二次函数的图象过点(1,1)和点(2,9),解得:,;对称轴为:;(2)令,解得:,如图:点A的坐标为(,1),点B的坐标为(5,1);结合图象得到,当x或x5时,函数值大于1【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式23、(1)证明见解析;(2);(3)【分析】(1)连接、,根据圆内接四边形的性质得到,求得,又点在上,于是得到结论;(2)由(1)知:又,设为,则为,根据勾股定理即可得到结论;(3)连接BD,OA,根据已知条件推出当四边形ABOD的面积最大时,四边形
23、ABCD的面积最大,当OABD时,四边形ABOD的面积最大,根据三角形和菱形的面积公式即可得到结论【详解】解:(1)证明:连接、,四边形为圆内接四边形,又点在上,是的切线;(2)由(1)知:又,设为,则为,在中,即,又,;(3)连接,当四边形的面积最大时,四边形的面积最大,当时,四边形的面积最大,四边形的最大面积,故答案为:【点睛】本题考查了圆的综合题,切线的判定,勾股定理,三角形的面积的计算,正确的作出辅助线是解题的关键24、(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人
24、数乘以样本中居民的平均使用次数即可得【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是:(次),根据使用次数可得:众数为10次;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数;(3)平均数为(次),(次)估计该小区居民一周内使用共享单车的总次数为22000次【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键25、(1)30,6;(2);t【分析】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求
25、出AB的长;(2)如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OFQC可求出t的值;设AB,CD的中点分别为E,F,O与AD,BC的切点分别为N,G,过点Q作QHAD于H,如图21,当O第一次与PQ相切于点M时,证QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QPQH可求出t的值;同理,如图22,当O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围【详解】(1)设点Q的运动速度为a,则由图可看出,当运动时间为5s时,PDQ有最大面积450,即此时点Q到达点B处,AP6t,SPDQ(6065)5a450,a6,AB5a30,故答案为:30,6;(2)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度大学兼职教师教学辅导与辅导员聘用合同
- 2025办公场所无偿转租合同范本含保密条款及竞业限制
- 语言礼仪知识培训课件
- 2025年签订的竞业限制合同-你的职场保障吗-
- 2025年车辆抵押借款合同书范本
- 2025劳动合同签订模板
- 2025- 电子合同与传统合同的比较
- 2025年国际工程承包项目人民币贷款合同
- 办公环境优化与办公用品管理模板
- 企业员工职业发展路径规划模板
- 《爱的五种能力》
- 石膏固定病人护理常规
- 2025至2030中国管道运输行业深度研究及发展前景投资评估分析
- 麻醉科临床操作技术规范
- 办公场所消防培训课件
- 术后谵妄护理查房
- 绿地香港招标管理制度
- 2025年新疆中考数学试卷真题(含答案解析)
- DNA纳米导线-洞察及研究
- 2025年广西专业技术人员继续教育公需科目(三)答案
- 2025合同法自考法律本科
评论
0/150
提交评论