2023学年江西省瑞安市六校联盟数学九年级第一学期期末检测模拟试题含解析_第1页
2023学年江西省瑞安市六校联盟数学九年级第一学期期末检测模拟试题含解析_第2页
2023学年江西省瑞安市六校联盟数学九年级第一学期期末检测模拟试题含解析_第3页
2023学年江西省瑞安市六校联盟数学九年级第一学期期末检测模拟试题含解析_第4页
2023学年江西省瑞安市六校联盟数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,阳光透过窗户洒落在地面上,已知窗户高,光亮区的顶端距离墙角,光亮区的底端距离墙角,则窗户的底端距离地面的高度()为()ABCD2如图,以(1,-4)为顶点的二

2、次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是( )A2x3B3x4C4x5D5x63若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是( )A顶点坐标为(1,4)B函数有最大值4C对称轴为直线D开口向上4已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1205已知反比例函数y=的图象经过点P(1,2),则这个函数的图象位于()A二、三象限B一、三象限C三、四象限D二、四象限6二次函数ya(xm)2n的图象如图,则一次函数ymx+n的图象经过(

3、)A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限7如图,是的直径,点,在上,若,则的度数为( )ABCD8如图,是的直径,是的两条弦,连接,若,则的度数是( )A10B20C30D409如图,在ABC中,中线AD、BE相交于点F,EGBC,交AD于点G,则的值是( )ABCD10如图,AB是半圆O的直径,BAC40,则D的度数是( )A140B130C120D110二、填空题(每小题3分,共24分)11如图,RtABC中,C90,AC10,BC1动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,

4、AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动在移动过程中,将PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BNPE时,t的值为_12如果关于x的方程x2-5x + a = 0有两个相等的实数根,那么a=_.13如图,ABC中,D为BC上一点,BADC,AB6,BD4,则CD的长为_14如图,直线与双曲线交于点,点是直线上一动点,且点在第二象限连接并延长交双曲线与点过点作轴,垂足为点过点作轴,垂足为,若点的坐标为,点的坐标为,设的面积为的面积为,当时,点的横坐标的取值范围为_15请写

5、出一个一元二次方程,使它的两个根分别为2,2,这个方程可以是_16抛物线关于x轴对称的抛物线解析式为_17如图,在中,将绕顶点顺时针旋转,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么_.18如图,直线a、b与、分别相交于点A、B、C和点D、E、F若AB=3,BC=5,DE=4,则EF的长为_三、解答题(共66分)19(10分)(1)计算:|12cos45+2sin30(2)解方程:x26x16020(6分)温州某企业安排名工人生产甲、乙两种产品,每人每天生产件甲或件乙,甲产品每件可获利元.根据市场需求和生产经验,乙产品每天产量不少于件,当每天生产件时,每件可获利元, 每

6、增加件,当天平均每件利润减少元.设每天安排人生产乙产品.根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲_乙_若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,求每件乙产品可获得的利润.21(6分)解方程:(1)x24x10;(2)5x(x1)x122(8分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.2

7、3(8分)如图,在下列1010的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点(1)直接写出ABC的面积;(2)将ABC绕点B逆时针旋转90得到A1BC1,在网格中画出A1BC1;(3)在图中画出线段EF,使它同时满足以下条件:点E在ABC内;点E,F都是格点;EF三等分BC;EF请写出点E,F的坐标24(8分)如图,点B,E,C,F 在一条直线上,AB=DE,AC=DF,BE=CF,求证:A=D25(10分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=B=60(1)求ADC的度数;(2)求证:AE是O的切线26(10分)如图,四

8、边形ABCD的三个顶点A、B、D在O上,BC经过圆心O,且交O于点E,A120,C30(1)求证:CD是O的切线(2)若CD6,求BC的长(3)若O的半径为4,则四边形ABCD的最大面积为 参考答案一、选择题(每小题3分,共30分)1、A【分析】根据光沿直线传播的原理可知AEBD,则,根据相似三角形的对应边成比例即可解答【详解】解:AEBD,解得:经检验是分式方程的解故选:A【点睛】本题考查了相似三角形的判定及性质,解题关键是熟知:平行于三角形一边的直线和其他两边或延长线相交,所截得的三角形与原三角形相似2、C【解析】试题解析:二次函数y=ax2+bx+c的顶点为(1,-4),对称轴为x=1,

9、而对称轴左侧图象与x轴交点横坐标的取值范围是-3x-2,右侧交点横坐标的取值范围是4x1故选C考点:图象法求一元二次方程的近似根3、D【分析】由题意根据根与系数的关系得到a0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1【详解】解:关于x的一元二次方程的两个实数根是-1和3,-a=-1+3=2,a=-20,二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二

10、次函数的性质进行分析是解题的关键4、D【解析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120,即弦AB所对的圆周角的度数是60或120,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.5、D【分析】此题涉及的知识点是反比例函数的图像与

11、性质,根据点坐标P(1,2)带入反比例函数y=中求出k值就可以判断图像的位置【详解】根据y=的图像经过点P(-1,2),代入可求的k=-2,因此可知k0,即图像经过二四象限.故选D【点睛】此题重点考察学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键6、A【解析】由抛物线的顶点坐标在第四象限可得出m0,n0,再利用一次函数图象与系数的关系,即可得出一次函数ymx+n的图象经过第一、二、三象限【详解】解:观察函数图象,可知:m0,n0,一次函数ymx+n的图象经过第一、二、三象限故选A【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k0,b0ykx+b的图象在一、

12、二、三象限”是解题的关键7、C【分析】先根据圆周角定理求出ACD的度数,再由直角三角形的性质可得出结论【详解】,ABD=ACD =40,AB是O的直径,ACB=90BCD=ACB -ACD =90-40=50故选:C【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键8、D【分析】连接AD,由AB是O的直径及CDAB可得出弧BC=弧BD,进而可得出BAD=BAC,利用圆周角定理可得出BOD的度数【详解】连接AD,如图所示:AB是O的直径,CDAB,弧BC=弧BD,BAD=BAC=20BOD=2BAD=40,故选:D【点睛】此题考查了圆周角定理以及垂径定理此题难度不大,利用

13、圆周角定理求出BOD的度数是解题的关键9、C【分析】先证明AG=GD,得到GE为ADC的中位线,由三角形的中位线可得GEDCBD;由EGBC,可证GEFBDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案【详解】E为AC中点,EGBC,AG=GD,GE为ADC的中位线,GEDCBDEGBC,GEFBDF,FD=2GF设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,故选:C【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键10、B【分析】根据圆周角定理求

14、出ACB,根据三角形内角和定理求出B,求出D+B=180,再代入求出即可.【详解】AB是半圆O的直径,ACB=90,BAC=40,B=180ACBBAC=50,A、B、C、D四点共圆,D+B=180,D=130,故选:B【点睛】此题主要考查圆周角定理以及圆内接四边形的性质,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、【分析】作NHBC于H首先证明PECNEBNBE,推出EHBH,根据cosPECcosNEB,推出,由此构建方程解决问题即可【详解】解:作NHBC于HEFBC,PEFNEF,FECFEB90,PEC+PEF90,NEB+FEN90,PECNEB,PEBN,PECNB

15、E,NEBNBE,NENB,HNBE,EHBH,cosPECcosNEB,EFAC,EFEN (13t),整理得:63t2960t+1000,解得t或 (舍弃),故答案为:【点睛】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型12、【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a的等式,求出a的值【详解】关于x的方程x2-5x+a=0有两个相等的实数根,=25-4a=0,即a=故答案为:.【点睛】一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2

16、)=0方程有两个相等的实数根;(3)0方程没有实数根13、1【分析】利用角角定理证明BADBCA,然后利用相似三角形的性质得到,求得BC的长,从而使问题得解.【详解】解:BAD=C,B=B,BADBCA,AB=6,BD=4,BC=9,CD=BC-BD=9-4=1【点睛】本题考查相似三角形的判定与性质,熟记判定方法准确找到相似三角形对应边是本题的解题关键.14、-3x-1【分析】根据点A的坐标求出中k,再根据点B在此图象上求出点B的横坐标m,根据结合图象即可得到答案.【详解】A(-1,3)在上,k=-3,B(m,1)在上,m=-3,由图象可知:当时,点P在线段AB上,点P的横坐标x的取值范围是-

17、3x-1,故答案为:-3x-1.【点睛】此题考查一次函数与反比例函数交点问题,反比例函数解析式的求法,正确理解题意是解题的关键.15、x240【分析】根据一元二次方程的根与系数的关系,即可求出答案【详解】设方程x2mx+n0的两根是2,2,2+(2)m,2(2)n,m0,n4,该方程为:x240,故答案为:x240【点睛】本题主要考查一元二次方程的根与系数的关系,掌握一元二次方程ax2+bx+c0的两个根x1,x2与系数的关系:x1+x2=,x1x2=,是解题的关键.16、【分析】由关于x轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线的顶点关于x轴对称的顶点,关于x轴对称,则开口

18、方向与原来相反,得出二次项系数,最后写出对称后的抛物线解析式即可【详解】解:抛物线的顶点为(3,-1),点(3,-1)关于x轴对称的点为(3,1),又关于x轴对称,则开口方向与原来相反,所以 ,抛物线关于x轴对称的抛物线解析式为.故答案为:.【点睛】本题考查了二次函数的图象与几何变换,解题的关键是抓住关于x轴对称点的特点17、【分析】设AC3x,AB5x,可求BC4x,由旋转的性质可得CB1BC4x,A1B15x,ACBA1CB1,由题意可证CEB1DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解【详解】ACB90,sin B,设AC3x,AB5x,BC4x,将ABC绕顶点C顺时

19、针旋转,得到A1B1C,CB1BC4x,A1B15x,ACBA1CB1,点E是A1B1的中点,CEA1B12.5xB1E=A1E,BEBCCE1.5x,BB1,CEB1BEDCEB1DEBBD=,DE=1.5x,A1D= A1E- DE=x,则x: =故答案为:.【点睛】本题考查了旋转的性质,解直角三角形,相似三角形的判定和性质,证CEB1DEB是本题的关键18、【分析】直接根据平行线分线段成比例定理即可得【详解】,解得,故答案为:【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键三、解答题(共66分)19、(1)1;(1)x18,x11【分析】(1)根据二次根式的

20、乘法、加减法和特殊角的三角函数值可以解答本题;(1)根据因式分解法可以解答此方程【详解】(1)|1|+1cos45+1sin301+11+11+1+11;(1)x16x160,(x8)(x+1)0,x80或x+10,解得,x18,x11【点睛】本题考查解一元二次方程、实数的运算、特殊角的三角函数值,解答本题的关键是明确它们各自的解答方法20、 (1)65-x,130-2x,130-2x;(2)每件乙产品可获得的利润是元.【分析】(1)根据题意即可列出代数式;(2)根据题意列出方程即可求解.【详解】解:由己知,每天安排人生产乙产品时,生产甲产品的有人,共生产甲产品件.在乙每件元获利的基础上,增加

21、人,利润减少元每件,则乙产品的每件利润为.故答案为:由题意解得(不合题意,舍去)(元)答:每件乙产品可获得的利润是元【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系列方程.21、(1)x12+,x22;(2)x11,x20.2【分析】(1)利用配方法求解,可得答案;(2)利用因式分解法求解,可得答案【详解】(1)x24x1,x24x+41+4,即(x2)27,则x2,解得:x12+,x22;(2)5x(x1)(x1)0,(x1)(5x1)0,则x10或5x10,解得:x11,x20.2【点睛】本题主要考查一元二次方程的解法,掌握配方法和因式分解法解方程,是解题的关键.2

22、2、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,设P(a,a-3),得出PD的长,列出SBDC的表达式,化简成顶点式,即可求解;(3)取G点坐标为(0,),过M点作MBBG,用BM代替BM,即可得出最小值的情况,再将直线BG、直线BC的解析式求出,求得M点坐标和CGB的度数,再根据CGB的度数利用三角函数得出最小值BC的值.【详解】解:(1)抛物线经过点A、B、C,A(-1,0),B(3,0),C(0,-3),代入表达式,解得a= 1,b=-2,c=-3,故该抛物线解析

23、式为:.(2)令,x1=-1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b,将B、C代入得:k=,1,b=-3,直线BC的解析式为y=x-3,设P(a,a-3),则D(a,a2-2a-3),PD=(a-3)-(a2-2a-3)= -a2+3aSBDC=SPDC+SPDB=PD3=,当a=时,BDC的面积最大,且为为,此时P(,);(3)如图,取G点坐标为(0,),连接BG,过M点作MBBG,BMBM,当C、M、B在同一条直线上时,CM+MB最小.可求得直线BG解析式为:,BCBG故直线BC解析式为为,令y=0,则x=,BC与x轴交点为(,0)OG=,OB=3,CGB=60,BC=

24、 CGsinCGB=,综上所述:CM+MB最小值为,此时M(,0).【点睛】此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用23、(1)12;(2)见解析;(3)E(2,4),F(7,8).【分析】(1)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC的面积;(2)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可得到A1BC1;(3)利用平行线分线段成比例得到CF:BE=2,则EF三等分BC,然后写出E、F的坐标,根据勾股定理求出EF的长度为【详解】解:(1)ABC的面积4771334412;(2)如图,A1B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论