版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.15 C.12或15 D.92.4的算术平方根是()A.4 B.2 C. D.3.下列各数中,无理数的是()A.0 B.1.01001 C.π D.4.如果分式的值为零,那么应满足的条件是()A., B., C., D.,5.图中的小正方形边长都相等,若,则点Q可能是图中的()A.点D B.点C C.点B D.点A6.已知点与点关于轴对称,则点的坐标为()A. B. C. D.7.如图,AB=AC,CF⊥AB于F,BE⊥AC于E,CF与BE交于点D.有下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上;④点C在AB的中垂线上.以上结论正确的有()个.A.1 B.2 C.3 D.48.关于点和点,下列说法正确的是()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称9.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠1是对顶角,那么∠1=∠1.③三角形的一个外角大于任何一个内角.④如果x1>2,那么x>2.A.1个 B.1个 C.3个 D.4个10.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是()A.60° B.65° C.75° D.80°二、填空题(每小题3分,共24分)11.分解因式:3x2-6x+3=__.12.如图,已知平分,且,若,则的度数是__________.13.点P(1,﹣2)关于x轴对称的点的坐标为P′______.14.,,点在格点上,作出关于轴对称的,并写出点的坐标为________.15.将一副三角板如图叠放,则图中∠α的度数为______.16.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.17.已知,则的值为________.18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4cm,动点P从点B出发沿射线BC方向以2cm/s的速度运动.设运动的时间为t秒,则当t=_____秒时,△ABP为直角三角形.三、解答题(共66分)19.(10分)在5×7的方格纸上,任意选出5个小方块涂上颜色,使整个图形(包括着色的“对称”)有:①1条对称轴;②2条对称轴;③4条对称轴.20.(6分)某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为___,图①中m的值是___;(2)求本次你调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.21.(6分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.22.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1).(1)请在如图所示的网格内画出平面直角坐标系,并写出C点坐标;(2)先将△ABC沿x轴翻折,再沿x轴向右平移4个单位长度后得到△A1B1C1,请在网格内画出△A1B1C1;(3)在(2)的条件下,△ABC的边AC上一点M(a,b)的对应点M1的坐标是.(友情提醒:画图结果确定后请用黑色签字笔加黑)23.(8分)小刚根据以往的学习经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.以下是小刚的探究过程,请补充完整.(1)具体运算,发现规律:特例1:;特例2:;特例3:;特例4:______(举一个符合上述运算特征的例子);(2)观察、归纳,得出猜想:如果为正整数,用含的式子表示这个运算规律:______;(3)请你证明猜想的正确性.24.(8分)如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.25.(10分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?26.(10分)如图,点E,F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=1.故选:B.【点睛】本题考查了等腰三角形,灵活根据等腰三角形的性质进行分类讨论是解题的关键.2、B【分析】直接利用算术平方根的定义得出答案.【详解】解:4的算术平方根是:1.故选:B.【点睛】此题主要考查了实数的相关性质,正确把握相关定义是解题关键.3、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;D.,是整数,属于有理数.故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.4、A【分析】根据分子等于零,且分母不等于零列式求解即可.【详解】由题意得a-1=0且1a+b≠0,解得a=1,b≠-1.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.5、A【分析】根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP≌△MFD.
故选:A.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.6、B【分析】根据关于轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.【详解】由题意,得与点关于轴对称点的坐标是,故选:B.【点睛】此题主要考查关于轴对称的点坐标的求解,熟练掌握,即可解题.7、C【详解】解:∵BE⊥AC,CF⊥AB,∴∠AEB=∠AFC=∠CED=∠DFB=90°.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF.∵AC=AB,∴CE=BF.在△CDE和△BDF中,,∴△CDE≌△BDF(AAS)∴DE=DF.∵BE⊥AC于E,CF⊥AB,∴点D在∠BAC的平分线上.根据已知条件无法证明AF=FB.综上可知,①②③正确,④错误,故选C.【点睛】本题考查了全等三角形的判定及性质、角平分线的判定等知识点,要求学生要灵活运用,做题时要由易到难,不重不漏.8、C【分析】根据点坐标的特征,即可作出判断.【详解】解:∵点,点,∴点P、Q的横坐标相同,故A、B选项错误;点P、Q的中点的纵坐标为:,∴点和点关于直线对称;故选:C.【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握关于直线对称的点坐标的特征.9、A【解析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【详解】A、两条平行线被第三条直线所截,内错角相等,故A错误,为假命题;B、如果∠1和∠1是对顶角,那么∠1=∠1,故B正确,为真命题;C、三角形的一个外角大于任何一个与它不相邻的内角,故C错误,为假命题;D、如x=-1时,x1>2,但是x<2,故D错误,为假命题,故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、三角形的外角的性质,属于基础知识,难度不大.10、D【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.二、填空题(每小题3分,共24分)11、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.13、(1,2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,即可得出答案.【详解】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,
∴点P(1,-2)关于x轴对称点的坐标为(1,2),
故答案为(1,2).【点睛】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即横坐标不变,纵坐标变成相反数,难度较小.14、(4,-3).【分析】根据题意,作出,并写出的坐标即可.【详解】解:如图,作出关于轴对称的,的坐标为(4,-3).【点睛】作关于轴对称的,关键是确定三个点的位置.15、15°.【解析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.16、﹣5【分析】试题分析:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5【详解】请在此输入详解!17、1【分析】逆用同底数幂的乘法公式进行变形,然后代入即可得出答案.【详解】故答案为:1.【点睛】本题主要考查同底数幂的乘法的逆用,掌握同底数幂的乘法法则是解题的关键.18、3或1【分析】分两种情况讨论:①当∠APB为直角时,点P与点C重合,根据可得;②当∠BAP为直角时,利用勾股定理即可求解.【详解】∵∠C=90°,AB=1cm,∠B=30°,∴AC=2cm,BC=6cm.①当∠APB为直角时,点P与点C重合,BP=BC=6cm,∴t=6÷2=3s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣6)cm,AC=2cm,在Rt△ACP中,AP2=(2)2+(2t﹣6)2,在Rt△BAP中,AB2+AP2=BP2,∴(1)2+[(2)2+(2t﹣6)2]=(2t)2,解得t=1s.综上,当t=3s或1s时,△ABP为直角三角形.故答案为:3或1.【点睛】本题考查了三角形的动点问题,掌握以及勾股定理是解题的关键.三、解答题(共66分)19、答案见解析.【分析】①直接利用轴对称图形的性质得出符合题意的答案;②直接利用轴对称图形的性质得出符合题意的答案;③直接利用轴对称图形的性质得出符合题意的答案.【详解】①如图1所示:②如图2所示:③如图3所示:20、(1)50,1;(2)平均数为16,众数是10,中位数是15;(3)928人【分析】(1)根据捐款数是5元的,所占的百分比是8%,即可求得总人数,然后根据百分比的意义求得m的值;
(2)根据平均数、众数、中位数的定义即可求解;
(3)利用总人数2900乘以对应的百分比即可求解.【详解】解:(1)调查的学生数是:4÷8%=50(人),
m=×100=1.
故答案是:50,1;
(2)平均数是:=16(元),众数是:10元,中位数是:15元;
(3)该校本次活动捐款金额为10元的学生人数是:2900×1%=928(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)65°(2)证明见解析【分析】(1)由题意可得∠EAD=∠BAC=25°,再根据∠AED=90°,利用直角三角形两锐角互余即可求得答案;(2)由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,DE=DC,根据线段垂直平分线的判定定理即可得证.【详解】(1)∵AD平分∠BAC,∠BAC=50°,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°-∠EAD=90°-25°=65°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又AD平分∠BAC,∴∠DAE=∠DAC,又∵AD=AD,∴△AED≌△ACD,∴AE=AC,DE=DC∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.【点睛】本题考查了直角三角形两锐角互余、三角形全等的判定与性质、线段垂直平分线的判定等,熟练掌握相关的性质定理与判定定理是解题的关键.22、(1)图见解析;C(-1,3);(2)图见解析;(3)(a+4,-b).【分析】(1)根据A、B的坐标即可画出平面直角坐标系,进而得出点C的坐标;(2)依据轴对称的性质,即可得到△ABC关于x轴对称的图形,然后利用平移的性质得到△A1B1C1;(3)利用关于x轴对称的两点坐标关系和平移规律即可求出点M1的坐标.【详解】(1)根据点A(-3,5),故将A向右移动3个单位、向下移动5个单位,即可得到原点的位置,建立坐标系,如图所示平面直角坐标系即为所求,此时点C(-1,3);(2)根据题意,翻折和平移后得到△A1B1C1,如图所示△A1B1C1即为所求:(3)点M(a,b)关于x轴对称点为(a,-b),然后向右平移4个单位后的坐标为(a+4,-b)M1的坐标为(a+4,-b).【点睛】本题考查了轴对称和平移变换,熟练掌握轴对称和平移变换的性质是解题的关键.23、(1)(合理即可);(2);(3)见解析.【分析】(1)根据题目中的例子可以写出例4;(2)根据特例中被开方数与序号数之间的关系,可以写出相应的猜想;(3)根据二次根式和分式的运算法则对等号左边的式子化简,即可得到等号右边的式子.【详解】解:(1)特例4:(合理即可)(2)由特例可知,运算规律为:;(3)证明:.∵为正整数,∴,∴,即.【点睛】本题考查二次根式的混
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工现场信号指挥安全管理方案
- 工地物料利用率提升方案
- 燃气管道振动监测技术方案
- 燃气锅炉安装调试方案
- 热力系统运行安全培训方案
- 2025年疼痛科多模式镇痛方案知情同意书
- 2025年城市公共停车场差别化收费方案听证协议
- 2025年广东省饶平县种子公司公开招聘工作人员试题带答案详解
- 2026年平衡计分卡客户指标协议
- 安全员A证考试【黄金题型】附答案详解
- 2025南航机械复试试题及答案
- 急性胰腺炎诊疗指南解读2025
- 辽宁省建筑施工安全生产标准化考评实施细则
- 电站火灾事故应急预案
- GJB827B--2020军事设施建设费用定额
- 娃娃菜栽培技术
- 工业锅炉司炉课件
- 数字营销专业人才培养方案
- 新疆概算管理办法
- 女性中医健康养生讲座
- 《养老服务政策法规与标准》智慧健康养老服务专业全套教学课件
评论
0/150
提交评论