双水相萃取技术_第1页
双水相萃取技术_第2页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7/7双水相萃取技术三、双水相萃取

3.1双水相萃取的原理及特点

3.1.1双水相萃取的原理

双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。

3.1.2双水相萃取的特点

双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;

(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;

(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。

3.2双水相萃取在分离和提取各种蛋白质(酶)上的应用

用聚乙二醇(PEG)/羟丙基淀粉酶(ReppalPEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。比活率为原发酵液的1.5倍,蛋白酶在水相中的收率高于60%。通过向萃取相(上相)中加进适当浓度的(NH4)2SO4可达到反萃取。实验结果表明,随着(NH4)2SO4浓度的增加,双水相体系两相间固体物析出量也增加。固体沉淀物既可干燥后生产工业级酶制剂,也可将固体物加水溶解后用有机溶剂沉淀法制造食品级酶制剂.

Harris用双水相体系从羊奶中纯化蛋白,研究了牛血清清蛋白(OSA)、牛酪蛋白、β-乳球蛋白在PEG/磷酸盐体系中的分配以及PEG相对分子质量、pH值和盐的加入对3种蛋白分配的影响。实验结果表明。增加NaCl浓度,可提高分配系数,最佳pH为5。对OSA和牛酪蛋白,可得到更高的分配系数。在含有疏水基葡聚糖中,蛋白质和类囊体薄膜泡囊的分配研究表明,苯甲酰基葡聚糖和戊酰基葡聚糖具有疏水性。疏水基影响氨基酸、蛋白质和薄膜泡囊在双水相体系中的分配,在只有磷酸盐缓冲溶液的PEG8000/葡聚糖双水相体系中,大部分β-半乳糖苷酶被分配在上相,但在下相中加入少量的苯甲酰基葡聚糖(取代程度为0.054)或戊酰基葡聚糖(取代程度为0.12)时,β-半乳糖苷酶的分配系数就降低了100倍。在对牛血清清蛋白、溶菌酶、脂肪酶和β-乳球蛋白的分配进行的观察中发现具有相似的现象。类囊体薄膜泡囊的分配受疏水基的影响特别大,薄膜泡囊被分配在含有疏水基的一相中。在含有N,N-二甲基甲酰胺的聚合物双水相中,利用逆流分配可对玉米醇溶蛋白进行分级分离。Miyuki在PEG/K3PO4双水相体系中用两步法对葡糖淀粉酶进行了萃取纯化。用第一步萃取后含有酶的下相和PEG组成双水相作为第二步萃取体系,称作两步法。葡糖淀粉酶的最佳分配条件是PEG4000(第一步)、PEG1500(第二步),pH=7,纯化系数提高了3倍。

液-液萃取技术是化学工业中普遍采用的分离技术之一,在生物化工中也有广泛的应用。然而,大部分生物物质是有生物活性的,需要在低温或室温条件下进行分离纯化,而采用传统萃取技术无法完成。双水相萃取就是考虑到这种现状,基于液-液萃取理论并考虑保持生物活性所开发的一种新型液-液萃取分离技术。

与传统的液-液分离方法相比,双水相萃取技术分离纯化蛋白质具有以下优势:体系含水量高,可达80%以上;蛋白质在其中不易变性;界面张力远远低于水-有机溶剂两相体系的界面张力,有助于强化相际间的质量传递;分相时间短,一般只需5~15min;易于放大和进行连续性操作;萃取环境温和,生物相容性高;聚合物对

蛋白质的结构有稳定和保护作用等。正是由于双水相萃取技术的诸多优势,现已被广泛用于蛋白质、核酸、氨基酸、多肽、细胞器等产品的分离和纯化。

1双水相萃取原理

双水相体系是指某些高聚物之间或高聚物与无机盐之间,在水中以适当的浓度溶解后形成的互不相溶的两相或多相水相体系。高聚物-高聚物-水体系主要依靠高聚物之间的不容性,即高聚物分子的空间阻碍作用,促使其分相;高聚物-盐-水体系一般认为是盐析作用的结果。

双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,不同之处在于萃取体系的性质差异。当生物物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。分配系数K等于两相中生物物质的浓度比,由于蛋白质的K值不相同(大致在011~10之间),因而双水相体系对各类蛋白质的分配具有较好的选择性。[/size]

1.2.1双水相体系简介(Aqueoustwophaseextraction,ATPE)

早在1896年,Beijerinck发现,当明胶与琼脂或明胶与可溶性淀粉溶液相混时,得到一个混浊不透明的溶液,随之分为两相,上相富含明胶,下相富含琼脂(或淀粉),这种现象被称为聚合物的不相溶性(incompatibility),从而产生了双水相体系(Aqueoustwophasesystem,ATPS)。双水相体系的形成主要是由于高聚物之间的不相溶性,即高聚物分子的空间阻碍作用,相互无法渗透,不能形成均一相,从而具有分离倾向,在一定条件下即可分为二相。一般认为只要两聚合物水溶液的憎水程度有所差异,混合时就可发生相分离,且憎水程度相差越大,相分离的倾向也就越大。可形成双水相体系的聚合物有很多,典型的聚合物双水相体系有聚乙二醇(polyethyleneglycol,略作PEG)/葡聚糖(dextran),聚丙二醇(polypropyleneglycol)/聚乙二醇和甲基纤维素(methylcellulose)/葡聚糖等。另一类双水相体系是由聚合物/盐构成的。此类双水相体系一般采用聚乙二醇(polyethyleneglycol)作为其中一相成相物质,而盐相则多采用硫酸盐或者磷酸盐。

1.2.2萃取原理

双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配。当萃取体系的性质不同时,物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。物质在双水相体系中分配系数K可用下式表示:

K=C上/C下

其中K为分配系数,C上和C下分别为被分离物质在上、下相的浓度。

分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。其分配情况服从分配定律,即,“在一定温度一定压强下,如果一个物质溶解在两个同时存在的互不相溶的液体里,达到平衡后,该物质在两相中浓度比等于常数”,分离效果由分配系数来表征。

由于溶质在双水相系统两相间的分配时至少有四类物质在两个不同相系统共存,要分配的物质和各相组分之间的相互作用是个复杂的现象,它涉及到氢键、电荷相互作用、范德华力、疏水性相互作用以及空间效应等,因此,可以预料到溶质在双水相系统中两相间的分配取决于许多因素,它既与构成双水相系统组成化合物的分子量和化学特性有关,也与要分配物质的大小、化学特性和生物特性相关。

大量研究表明,生物分子在双水相系统中的实际分配是生物分子与双水相系统间静电作用、疏水作用、生物亲和作用等共同作用的结果,形式上可以将分配系数的对数值分解为几项:InK=InKm+InKe+InKh+InKb+InKs+InKc

式中,Ke静电作用对溶质分配系数的贡献;

Kh疏水作用对溶质分配系数的贡献;

Kb生物亲和作用对溶质分配系数的贡献;

Ks分子大小对溶质分配系数的贡献;

Kc分子构型影响对溶质分配系数的贡献;

Km除上述因素外的其它因素影响对溶质分配系数的贡献。

值得指出的是,这些因素中虽然没有一个因素完全独立于其它因素,但一般来说,这些不同的因素或多或少是独立存在的。

影响待分离物质在双水相体系中分配行为的主要参数有成相聚合物的种类、成相聚合物的分子质量和总浓度、无机盐的种类和浓度、pH值、温度等。

1.2.3双水相的优势

ATPE作为一种新型的分离技术,对生物物质、天然产物、抗生素等的提取、纯化表现出以下优势:

(1)含水量高(70%--90%),在接近生理环境的体系中进行萃取,不会引起生物活性物质失活或变性;

(2)可以直接从含有菌体的发酵液和培养液中提取所需的蛋白质(或者酶),还能不经过破碎直接提取细胞内酶,省略了破碎或过滤等步骤;

(3)分相时间短,自然分相时间一般为5min~15min;

(4)界面张力小(10-7~10-4mN/m),有助于两相之间的质量传递,界面与试管壁形成的接触角几乎是直角;

(5)不存在有机溶剂残留问题,高聚物一般是不挥发物质,对人体无害;

(6)大量杂质可与固体物质一同除去;

(7)易于工艺放大和连续操作,与后续提纯工序可直接相连接,无需进行特殊处理;

(8)操作条件温和,整个操作过程在常温常压下进行;

(9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。

虽然该技术在应用方面已经取得了很大的进展,但几乎都是建立在实验的基础上,到目前为止还没能完全清楚地从理论上解释双水相系统的形成机理以及生物分子在系统中的分配机理。

现代生物分离技术在多肽蛋白质分离纯化中的应用

点击次数:408发布时间:2010-5-248:31:47

(inversemicelle)。双亲物质的这种胶团化过程的自由能变化主要来源于双亲分子之间偶极子-偶极子相互作用,除此之外,平动能和转动能的丢失以及氢键或金属配位键的形成等都可能参与这种胶团化过程。

在反胶束内部,双亲分子极性头基相互聚集形成一个“极性核”,可以增溶水、蛋白质等极性物质,增溶了大量水的反胶束体系即为微乳液(microemulsion)。水在反胶束中以两种形式存在:自由水(freewater)和结合水(boundwater),后者由于受到双亲分子极性头基的束缚,具有与主体水(普通水)不同的物化性质,如粘度增大,介电常数减小,氢键形成的空间网络结构遭到破坏等。

对于增溶了物质(如水,蛋白质等)的反胶束基本上都认为是单层双亲分子聚集的近似球体,并忽视胶束之间的相互作用。事实上,反胶束体系处于不停的运动状态,反胶束之间的碰撞频率为109~1011次/s,而且反胶束中的增溶物在频繁的交换。

2.1.2反胶束萃取蛋白质的机理

蛋白质溶解于小水池中(正萃,或称萃取),其周围有一层水膜及表面活性剂极性头的保护,使其避免与有机溶剂接触而失活。改变pH、盐浓度等条件蛋白质又可回到水相(反萃),实现了蛋白

质的萃取分离、纯化目的。反胶团萃取蛋白质的机理目前尚不十分清楚。一般认为,萃取过程是静电力、疏水力、空间力、亲和力或几种力协同作用的结果,其中蛋白质与表面活性剂极性头间的静电相互作用是主要推动力。根据所用表面活性剂类型,通过控制水相pH高于或低于蛋白质的等电点(pI),达到正萃反萃的目的。

2.2反胶束萃取蛋白质的应用

2.2.1同时提取蛋白质和油脂:陈复生等在AO-异辛烷反胶束同时萃取花生蛋白和花生油的过程,采用正交试验分析讨论了影响萃取的主要因素得到了最佳萃取工业条件。萃取后,油进入有机相而蛋白质溶入反胶束中。克服了传统方法工艺复杂,得率低,蛋白质容易变性的缺点。同时用蒸馏方法将油和烃分开,提炼出了油脂。

2.2.2分离蛋白质混合物:Chang在Aliquat336/异辛烷反胶束分离枯草杆菌中两种酶——淀粉酶和中性蛋白酶时,通过加入助表面活性剂丁醇,有效地分离了这两种不同等电点的酶。

2.2.3从发酵液中分离和提纯酶:Krishnakant用AOT/异辛烷体系从土豆发酵液中提取酸性磷酸酶,在pH值810,萃取水相与有机相体积比为3:1,反萃水相与有机相体积比为1:1时得到最大活性的酸性磷酸酶。Sun在CB-卵磷脂亲和反胶束中加入Tween85,直接从鸡蛋清中提取了溶

菌酶。而该反胶束系统还可以回收后反复使用。

三、双水相萃取

3.1双水相萃取的原理及特点

3.1.1双水相萃取的原理

双水相萃取与水-有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的

性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离。

3.1.2双水相萃取的特点

双水相体系萃取具有如下特点:(1)含水量高(70%~90%),是在接近生理环境的温度和体系中进行萃取,不会引起生物活性物质失活或变性;(2)分相时间短,自然分相时间一般为5~15min;(3)界面张力小(10-7~10-4mN/m),有助于强化相际间的质量传递;(4)不存在有机溶剂残留问题;(5)大量杂质能与所有固体物质一同除去,使分离过程更经济;(6)易于工程放大和连续操作。由于双水相萃取具有上述优点,因此,被广泛用于生物化学、细胞生物学和生物化工等领域的产品分离和提取。

3.2双水相萃取在分离和提取各种蛋白质(酶)上的应用

用聚乙二醇(PEG)/羟丙基淀粉酶(ReppalPEG)体系经两步法可从黄豆中分离磷酸甘油酸激酶(PGK)和磷酸甘油醛脱氢酶(GAPDH)。在黄豆匀浆中加入PEG4000,可絮凝细胞碎片及大部分杂蛋白。在上清液中加入PEG4000(12%)-ReppalPES(40%),PGK在上相、GAPGH在下相的收率均在80%以上。萃取过程的放大采用离心倾析机连续处理匀浆液,用离心萃取器完成双水相体系的两相分离,整个工艺具有处理量大、接触时间短、酶收率高的特点。用PEG/(NH4)2SO4双水相体系,经一次萃取从A-淀粉酶发酵液中分离提取α-淀粉酶和蛋白酶,萃取最适宜条件为

PEG1000(15%)-(NH4)2SO4(20%),pH=8,α-淀粉酶收率为90%,分配系数为19.6,蛋白酶的分离系数高达15.1。比活率为原发酵液的1.5倍,蛋白酶在水相中的收率高于60%。通过向萃取相(上相)中加进适当浓度的(NH4)2SO4可达到反萃取。实验结果表明,随着(NH4)2SO4浓度的增加,双水相体系两相间固体物析出量也增加。固体沉淀物既可干燥后生产工业级酶制剂,也可将固体物加水溶解后用有机溶剂沉淀法制造食品级酶制剂.

Harris用双水相体系从羊奶中纯化蛋白,研究了牛血清清蛋白(OSA)、牛酪蛋白、β-乳球蛋白

在PEG/磷酸盐体系中的分配以及PEG相对分子质量、pH值和盐的加入对3种蛋白分配的影响。实验结果表明。增加NaCl浓度,可提高分配系数,最佳pH为5。对OSA和牛酪蛋白,可得到更高的分配系数。在含有疏水基葡聚糖中,蛋白质和类囊体薄膜泡囊的分配研究表明,苯甲酰基葡聚糖和戊酰基葡聚糖具有疏水性。疏水基影响氨基酸、蛋白质和薄膜泡囊在双水相体系中的分配,在只有磷酸盐缓冲溶液的PEG8000/葡聚糖双水相体系中,大部分β-半乳糖苷酶被分配在上相,但在下相中加入少量的苯甲酰基葡聚糖(取代程度为0.054)或戊酰基葡聚糖(取代程度为0.12)时,β-半乳糖苷酶的分配系数就降低了100倍。在对牛血清清蛋白、溶菌酶、脂肪酶和β-乳

球蛋白的分配进行的观察中发现具有相似的现象。类囊体薄膜泡囊的分配受疏水基的影响特别大,薄膜泡囊被分配在含有疏水基的一相中。在含有N,N-二甲基甲酰胺的聚合物双水相中,利用逆流分配可对玉米醇溶蛋白进行分级分离。Miyuki在PEG/K3PO4双水相体系中用两步法对葡糖淀

粉酶进行了萃取纯化。用第一步萃取后含有酶的下相和PEG组成双水相作为第二步萃取体系,称作两步法。葡糖淀粉酶的最佳分配条件是PEG4000(第一步)、PEG1500(第二步),pH=7,纯化系数提高了3倍。

四、电泳

4.1电泳的定义原理及优点

在电场作用下,带电颗粒在溶液中的运动称为电泳,在小离子的情况下,称为离子导电性现象。这是一种不完全的电解现象,所需的产物不是直接释放在电极上,而是使它们不同的运动同步受阻在两电极间的中间位置上。它能分离非常类似的物质,包括不同的蛋白质,提高了分折和制备的效果,特别是在纸上和在聚丙烯酰胺或琼脂糖凝胶上区带电泳的采用。

电泳是分离生化物质的一种有效的和多功能的方法。在电场的作用下,电泳流动性的差别,可用于许多物质的分离,其中包括离子、胶体、细胞物质、细胞器以及全细胞。以前电泳仅用于常规的生化分析,但近期在制备电泳上取得了许多重大的进展(如低容积高价值的化合物或试剂的生产中)。

电泳分离的优点是分辨率高和能保持产物的生物活性。

4.2毛细管电泳(CE)

毛细管电泳是一类以毛细管为分离通道,以高压直流电场为驱动力的新型液相分离技术。毛细管电泳具有多种分离模式:毛细管区带电泳(CZE)、毛细管等速电泳(CITP)、毛细管等电聚焦(CIEF)等。应用毛细管电泳分离多肽类物质具有柱效高、分析时间短、所用样品量和试剂少等优点。黄志东等使用MECC在8min分离了7种肽类物质。

与高效液相色谱相比,CE的制备总量低,只适用于微量制备;对扩散系数小的生物大分子而言,CE比HPLC的分辨率高得多,因此CE被用来作为收集非常纯的单一馏分的微量制备手段。

4.3二维凝胶电泳技术(two-dimensionaldelelectrophoresis,2-DE)

2-DE是1975年由O’Farrell首次建立的,其基本原理是根据蛋白质具有不同等电点和相对分子质量的二个一级特性,将蛋白质的混合物在等电聚焦电泳(is

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论