2023届广东省湛江市名校数学九年级上册期末学业质量监测模拟试题含解析_第1页
2023届广东省湛江市名校数学九年级上册期末学业质量监测模拟试题含解析_第2页
2023届广东省湛江市名校数学九年级上册期末学业质量监测模拟试题含解析_第3页
2023届广东省湛江市名校数学九年级上册期末学业质量监测模拟试题含解析_第4页
2023届广东省湛江市名校数学九年级上册期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列运算中,正确的是().A. B. C. D.2.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是()A. B. C. D.3.对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<14.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m5.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A.57° B.66° C.67° D.44°6.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛 B.守株待兔C.明天是晴天 D.在只装有5个红球的袋中摸出1球,是红球.7.已知反比例函数,下列各点在此函数图象上的是()A.(3,4) B.(-2,6) C.(-2,-6) D.(-3,-4)8.已知x2+y=3,当1≤x≤2时,y的最小值是()A.-1 B.2 C.2.75 D.39.《代数学》中记载,形如的方程,求正数解的几何方法是:“如图1,先构造一个面积为的正方形,再以正方形的边长为一边向外构造四个面积为的矩形,得到大正方形的面积为,则该方程的正数解为.”小聪按此方法解关于的方程时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B. C. D.10.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知正方形的边长为1,为射线上的动点(不与点重合),点关于直线的对称点为,连接,,,.当是等腰三角形时,的值为__________.12.已知,则__________.13.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同.小华通过多次试验后发现,从盒子中摸出红球的频率是15%,摸出白球的频率是45%,那么可以估计盒子中黄球的个数是_____.14.一种药品原价每盒25元,两次降价后每盒16元.设两次降价的百分率都为x,可列方程________.15.已知四个点的坐标分别为A(-4,2),B(-3,1),C(-1,1),D(-2,2),若抛物线y=ax2与四边形ABCD的边没有交点,则a的取值范围为____________.16.图形之间的变换关系包括平移、______、轴对称以及它们的组合变换.17.如图,在中,,对角线,点E是线段BC上的动点,连接DE,过点D作DP⊥DE,在射线DP上取点F,使得,连接CF,则周长的最小值为___________.18.点A(1,-2)关于原点对称的点A1的坐标为________.三、解答题(共66分)19.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.20.(6分)有三张卡片(形状、大小、质地都相同),正面分别写上整式.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片正面的整式作为分子,第二次抽取的卡片正面的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.21.(6分)如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC的顶点都在网格线交点上.(1)图中AC边上的高为个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C为位似中心,把△ABC按相似比1:2缩小,得到△DEC;②以AB为一边,作矩形ABMN,使得它的面积恰好为△ABC的面积的2倍.22.(8分)如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=,求直线AB对应的函数表达式.23.(8分)已知关于x的一元二次方程.(1)若是方程的一个解,写出、满足的关系式;(2)当时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的、的值,并求出此时方程的根.24.(8分)有红、黄两个盒子,红盒子中藏有三张分别标有数字,,1的卡片,黄盒子中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现甲从红盒子中取出一张卡片,乙从黄盒子中取出一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得二次函数y=ax2+bx+1的图像与x轴有两个不同的交点,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.25.(10分)如图,在中,,的中点.(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上.26.(10分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.2、B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵,

∴该抛物线的顶点坐标是(1,3),

∴在旋转之后的抛物线解析式为:.

故选:B.【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.3、D【分析】根据反比例函数的单调性结合反比例函数的性质,即可得出反比例函数系数的正负,由此即可得出关于m的一元一次不等式,解不等式即可得出结论.【详解】∵双曲线y=,当x>2时,y随x的增大而减小,∴1-m>2,解得:m<1.故选:D.【点睛】本题考查了反比例函数的性质,解题的关键是找出1-m>2.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质,找出反比例函数系数k的正负是关键.4、A【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.5、A【分析】由圆周角定理定理得出∠AOC,再由等腰三角形的性质得到答案.【详解】解:∵∠AOC与∠ADC分别是弧AC对的圆心角和圆周角,

∴∠AOC=2∠ADC=66°,在△CAO中,AO=CO,∴∠ACO=∠OAC=,故选:A【点睛】本题考查了圆周角定理,此题难度不大,注意在同圆或等圆中,同弧或等弧所对圆周角等于它所对圆心角的一半,注意数形结合思想的应用.6、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:打开电视机,正在播放篮球比赛是随机事件,不符合题意;守株待兔是随机事件,不符合题意;明天是晴天是随机事件,不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D符合题意.故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【解析】依次把各个选项的横坐标代入反比例函数的解析式中,得到纵坐标的值,即可得到答案.【详解】解:A.把x=3代入得:,即A项错误,B.把x=-2代入得:,即B项正确,C.把x=-2代入得:,即C项错误,D.把x=-3代入得:,即D项错误,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,正确掌握代入法是解题的关键.8、A【分析】移项后变成求二次函数y=-x2+2的最小值,再根据二次函数的图像性质进行答题.【详解】解:∵x2+y=2,∴y=-x2+2.∴该抛物线的开口方向向下,且其顶点坐标是(0,2).∵2≤x≤2,∴离对称轴越远的点所对应的函数值越小,∴当x=2时,y有最小值为-4+2=-2.故选:A.【点睛】本题考查了二次函数的最值.求二次函数的最值有常见的两种方法,第一种是配方法,第二种是直接套用顶点的纵坐标求,熟练掌握二次函数的图像及性质是解决本题的关键.9、B【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【详解】x2+6x+m=0,x2+6x=-m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为.故选:B.【点睛】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.10、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.二、填空题(每小题3分,共24分)11、或或【分析】以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形.然后分别对这三种情况进行讨论即可.【详解】如图,以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形(1)讨论,如图作辅助线,连接,作交AD于点P,过点,作于Q,交BC于F,为等边三角形,正方形ABCD边长为1在四边形中∴为含30°的直角三角形(2)讨论,如图作辅助线,连接,作交AD于点P,连接BP,过点,作于Q,交AB于F,∵EF垂直平分CD∴EF垂直平分AB为等边三角形在四边形中(3)讨论,如图作辅助线,连接,过作交AD的延长线于点P,连接BP,过点,作于Q,此时在EF上,不妨记与F重合为等边三角形,在四边形中故答案为:或或.【点睛】本题主要考查等腰三角形的定义和解直角三角形,注意分情况讨论是解题的关键.12、【分析】根据比例的性质,由得,x=,再将其代入所求式子可得出结果.【详解】解:由得,x=,所以.故答案为:.【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.13、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,知道白球、黄球的频率后,可以得出黄球概率,即可得出黄球的个数.【详解】解:∵从盒子中摸出红球的频率是15%,摸出白球的频率是45%,∴得到黄球的概率为:1﹣15%﹣45%=40%,则口袋黄小球有:60×40%=1个.故答案为:1.【点睛】本题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率,解决本题的关键是要熟练掌握频率,概率的关系.14、25(1-x)²=16【解析】试题分析:对于增长率和降低率问题的一般公式为:增长前数量×=增长后的数量,降低前数量×=降低后的数量,故本题的答案为:15、或或【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】(1)当时,恒成立(2)当时,代入C(-1,1),得到,代入B(-3,1),得到,代入A(-4,2),得到,没有交点,或故答案为:或或.【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.16、旋转【分析】图形变换的形式包括平移、旋转和轴对称.【详解】图形变换的形式,分别为平移、旋转和轴对称故答案为:旋转.【点睛】本题考查了图形变换的几种形式,分别为平移、旋转和轴对称,以及他们的组合变换.17、【分析】过D作DG⊥BC于点G,过F作FH⊥DG于点H,利用tan∠DBC=和BD=10可求出DG和BG的长,然后求出CD的长,可知△DCF周长最小,即CF+DF最小,利用“一线三垂直”得到△HDF∽△GED,然后根据对应边成比例推出FH=2GD,可知F在DG右侧距离2DG的直线上,作C点关于直线的对称点C',连接DC',DC'的长即为CF+DF的最小值,利用勾股定理求出DC',则CD+DC'的长即为周长最小值.【详解】如图,过D作DG⊥BC于点G,过F作FH⊥DG于点H,∵tan∠DBC=,BD=10,设DG=x,BG=2x∴,解得∴DG=,BG=∴GC=BC-BG=∴CD=△DCF周长最小,即CF+DF最小∵∠FDE=90°∴∠HDF+∠GDE=90°∵∠GED+∠GDE=90°∴∠HDF=∠GED又∵∠DHF=∠EGD=90°∴△HDF∽△GED∴∴FH=2GD=即F在DG右侧距离的直线上运动,如图所示,作C点关于直线的对称点C',连接DC',DC'的长即为CF+DF的最小值∵DG⊥BC,FH⊥DG,FO⊥CC'∴四边形HFOG为矩形,∴OG=HF=又∵GC=∴OC=OC'=∴GC'=在Rt△DGC'中,DC'=∴△DCF周长的最小值=CD+DC'=故答案为:.【点睛】本题考查了利用正切值求边长,相似三角形的判定以及最短路径问题,解题的关键是作辅助线将三角形周长最小值转化为“将军饮马”模型.18、(-1,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点A(1,-2)与点A1(-1,2)关于原点对称,∴A1(-1,2).故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.三、解答题(共66分)19、(1)CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC,证明详见解析;(3).【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,然后根据正方形的性质即可求得DF的长,再根据直角三角形斜边上中线的性质即可得到OC的长.【详解】(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的边长4且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴Rt△CDF中,OC=DF=×=.【点睛】此题是四边形综合题,主要考查了等腰直角三角形的性质,正方形与全等三角形的判定与性质的综合应用,判断出△BAD≌△CAF是解本题的关键.20、(1)见解析;(2)【分析】(1)用树状图或列表法把所有的情况表示出来即可;(2)根据树状图找到所有的情况数以及能组成分式的情况数,利用能组成分式的情况数与总数之比求概率即可.【详解】(1)树状图如下:(2)总共有6种情况,其中能组成分式的有4种,所以(组成分式)【点睛】本题主要考查用树状图或列表法求随机事件的概率,掌握树状图或列表法和概率公式是解题的关键.21、(1);(2)①见解析,②见解析【分析】(1)利用等面积法即可求出AC边上的高;

(2)①利用位似图形的性质得出对应点位置连接即可;

②利用矩形的判定方法即可画出.【详解】解:(1)由图可知,设AC边上的高为x,则由三角形面积公式可得:解得,即AC边上的高为.(2)①如图所示:△DEC即为所求.②如图所示:矩形ABMN即为所求.【点睛】本题考查作位似图形,矩形的判定,勾股定理.(1)中熟练掌握等面积法是解决此问的关键;(2)中能作出AC的中点是解题关键;(3)中注意矩形的四个角都是直角,且矩形的一边为AB,另一边要与△ABC中AB边上的高相等.22、(1)见解析;(2)【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得k、b的值即可.【详解】(1)证明:连接OB.∵OA2=AB•AC∴,又∵∠OAB=∠CAO,∴△OAB∽△CAO,∴∠ABO=∠AOC,又∵∠AOC=90°,∴∠ABO=90°,∴AB⊥OB;∴直线AB是⊙O的切线;(2)解:∵∠ABO=90°,,OB=1,∴,∴点A坐标为(2,0),∵△OAB∽△CAO,∴,即,∴,∴点C坐标为;设直线AB对应的函数表达式为y=kx+b,则,∴∴.即直线AB对应的函数表达式为.【点睛】本题考查相似三角形的判定及性质、圆的切线定理、勾股定理、一次函数解析式等知识,解题的关键是正确理解题意,求出线段的长及各点的坐标.23、(1);(2)原方程有两个不相等的实数根;(3),,(答案不唯一).【分析】(1)把方程的解代入即可;(2)根据根的判别式及b=a+1计算即可;(3)根据方程根的情况得到根的判别式,从而得到a、b的值,再代入方程解方程即可.【详解】解:(1)把代入方程可得,故a、b满足的关系式为;(2)△,∵,∴△,∴原方程有两个不相等的实数根;(3)∵方程有两个相等的实数根,∴△=,即,取,(取值不唯一),则方程为,解得.【点睛】本题考查一元二次方程的解,解法,及根的判别式,熟记根的判别式,掌握一元二次方程的解法是解题的关键.24、(1)见解析;(2)不公平,理由见解析【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;

(2)二次函数的图像与x轴有两个不同的交点,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】解:(1)画树状图得:的可能结果有,、,、,、,、,、,、、及,取值结果共有9种;(2)当,时,△,此时无实数根,当,时,△,此时有两个不相等的实数根,当,时,△,此时有两个不相等的实数根,当,/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论