




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.天津市一足球场占地163000平方米,将163000用科学记数法表示应为(
)A.163×103 B.16.3×104 C.1.63×105 D.0.163×1062.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°3.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]4.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.﹣3 B.﹣1 C.2 D.35.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是()A.12 B.6 C.36 D.126.抛物线y=-2(x+3)2-4的顶点坐标是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)7.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A.5 B.6 C.7 D.88.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是()A. B. C. D.9.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.10.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100° B.105° C.110° D.115°11.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A. B. C. D.12.若关于的一元二次方程有两个相等的实数根,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD中,AD//BC,AD=4,BC=9,点E、F分别在边AB、CD上,且EF是梯形ABCD的“比例中线”,那么=_____.14.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.15.在中,,,则______________.16.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.17.如图,一次函数的图象交x轴于点B,交y轴于点A,交反比例函数的图象于点,若,且的面积为2,则k的值为________18.已知为锐角,且,则度数等于______度.三、解答题(共78分)19.(8分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.20.(8分)正比例函数y=2x与反比例函数y=的图象有一个交点的纵坐标为1.(1)求m的值;(2)请结合图象求关于x的不等式2x≤的解集.21.(8分)如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OA=2,双曲线经过点A.将△AOB绕点A顺时针旋转,使点O的对应点D落在x轴的负半轴上,若AB的对应线段AC恰好经过点O.(1)求点A的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由22.(10分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).23.(10分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.(1)求的长;(2)若,求.24.(10分)如图,已知矩形ABCD.在线段AD上作一点P,使∠DPC=∠BPC.(要求:用尺规作图,保留作图痕迹,不写作法和证明)25.(12分)已知抛物线.(1)若,,,求该抛物线与轴的交点坐标;(2)若,且抛物线在区间上的最小值是-3,求的值.26.如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t为何值时,?(2)求四边形BQPC的面积S与t的函数关系式;(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,求t的值.若不存在,请说明理由;(4)若DE经过点C,试求t的值.
参考答案一、选择题(每题4分,共48分)1、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将163000用科学记数法表示为:1.63×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象4、A【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】由根与系数的关系得故选:A.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.5、D【分析】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等边三角形,∴AB=OA=2cm,∴正六边形ABCDEF的周长=6AB=12cm.故选D【点睛】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键.6、C【解析】试题分析:抛物线的顶点坐标是(-3,-4).故选C.考点:二次函数的性质.7、B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8、C【分析】连接OM,作,交MF与点H,根据正六边性的性质可得出,,得出为等边三角形,再求OH即可.【详解】解:∵六边形是正六边形,∴∵点为劣弧的中点∴连接OM,作,交MF与点H∵为等边三角形∴FM=OM,∴故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.9、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.10、D【解析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.11、B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.12、B【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2−4ac=0,建立关于k的等式,求出k.【详解】解:∵方程有两个相等的实数根,∴△=b2−4ac=62−4×1×k=36−4k=0,解得:k=1.故选:B.【点睛】本题考查一元二次方程根的情况与判别式,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.二、填空题(每题4分,共24分)13、【分析】先利用比例中线的定义,求出EF的长度,然后由梯形ADFE相似与梯形EFCB,得到,即可得到答案.【详解】解:如图,∵EF是梯形的比例中线,∴,∴,∵AD//BC,∴梯形ADFE相似与梯形EFCB,∴;故答案为:.【点睛】本题考查了相似四边形的性质,以及比例中项的定义,解题的关键是熟练掌握相似四边形的性质和比例中线的性质.14、【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得,即可得AC2=CD•BC=4×8=32,解得AC=4.15、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.16、y=x-,【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4-x,则,解得,x=,∴点B的坐标为,设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=.故答案为:y=.【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.17、【解析】过点C作CD⊥x轴于点D,根据AAS可证明△AOB≌△CDB,从而证得S△AOC=S△OCD,最后再利用k的几何意义即可得到答案.【详解】解:过点C作CD⊥x轴于点D,如图所示,∵在△AOB与△CDB中,,∴△AOB≌△CDB(AAS),∴S△AOB=S△CDB,∴S△AOC=S△OCD,∵S△AOC=2,∴S△OCD=2,∴,∴k=±4,又∵反比例函数图象在第一象限,k>0,∴k=4.【点睛】本题考查全等三角形的判定与性质,反比例函数中比例系数k的几何意义,熟练掌握判定定理及k的几何意义是解题的关键.18、30【分析】根据锐角三角函数值即可得出角度.【详解】∵,为锐角∴=30°故答案为30.【点睛】此题主要考查根据锐角三角函数值求角度,熟练掌握,即可解题.三、解答题(共78分)19、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2),当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点;(2)∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2,又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1;(3)令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【点睛】本题考查了二次函数的性质、一次函数图象上点的坐标特征、二次函数的最值、解一元二次方程以及解不等式,解题的关键是:(1)利用二次函数的性质及一次函数图象上点的坐标特征,证出直线l恒过抛物线C的顶点;(2)利用二次函数的性质结合二次函数的最值,找出关于t的一元一次不等式组;(3)令y1=y2,求出点P,Q的横坐标.20、(1)8;(2)x≤﹣2或0<x≤2【分析】(1)先利用正比例函数解析式确定一个交点坐标,然后把交点坐标代入y=中可求出m的值;(2)利用正比例函数和反比例函数的性质得到正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣1),然后几何图像写出正比例函数图像不在反比例函数图像上方所对应的自变量的范围即可.【详解】解:(1)当y=1时,2x=1,解得x=2,则正比例函数y=2x与反比例函数y=的图像的一个交点坐标为(2,1),把(2,1)代入y=得m=2×1=8;(2)∵正比例函数y=2x与反比例函数y=的图像有一个交点坐标为(2,1),∴正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣1),如图,当x≤﹣2或0<x≤2时,2x≤,∴关于x的不等式2x≤的解集为x≤﹣2或0<x≤2.【点睛】本题主要考查的是正比例函数与反比例函数的基本性质以及两个函数交点坐标,掌握这几点是解题的关键.21、(1),双曲线的解析式为;(2)点在双曲线上,理由见解析.【分析】(1)根据旋转的性质和平行线的性质,得到,得到△AOD是等边三角形,根据特殊角的三角函数,求出点A的坐标,然后得到双曲线的解析式;(2)先求出OC的长度,然后利用特殊角的三角函数求出点C的坐标,然后进行判断即可.【详解】解:(1)过点A作轴,垂足为.∵轴,.有旋转的性质可知,...为等边三角形..,.点的坐标为.由题意知,,.双曲线的解析式为:.(2)点在双曲线上,理由如下:过点作轴,垂足为.由(1)知,...,.点的坐标为.将代入中,.点在双曲线上.【点睛】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,特殊角的三角函数等,求得△AOD是等边三角形是解题的关键.22、该段运河的河宽为.【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【详解】解:过作,可得四边形为矩形,,设,在中,,,在中,,,由,得到,解得:,即,则该段运河的河宽为.【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.23、(1)6;(2)4【分析】(1)连接EF,证明△EFG∽△DCG.推出,求出DE即可解决问题.(2)由三角形的高相同,则三角形的面积之比等于底边之比,求出,,即可求出答案.【详解】解:(1)连接.∵是平行四边形,∴点为的中点.∵为的中点,∴,且.∴.∴∵,∴,∴,∴;(2)∵,,,∴,∴,∵BE=DE,∴∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、详见解析【分析】以为圆心,为半径画弧,以为直径画弧,两弧交于点,连接并延长交于点,利用全等三角形和角平分线的判定和性质可得.【详解】解:如图,即为所作图形:∠DPC=∠BPC.【点睛】本题是作图—复杂作图,作线段垂直平分线,涉及到角平分线的判定和性质,全等三角形的判定和性质,难度中等.25、(1)(-1,0),;(2)b=7或.【分析】(1)将,,代入解析式,然后令y=0,求x的值,使问题得解;(2)求得函数的对称轴是x=-b,然后分成-b≤-2,-2<-b≤2和-b>2三种情况进行讨论,然后根据最小值是-3,即可解方程求解.【详解】解:(1)当,,时当y=0时,解得:∴该抛物线与x轴的交点为(-1,0),(2)当,时,∴抛物线的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园活动方案-玩具交易会
- 25年公司、项目部、各个班组安全培训考试试题答案可打印
- 2025年新员工入职安全培训考试试题附参考答案【考试直接用】
- 2025购销合同范本模板
- 2025年版个人住房公积金借款合同样本
- 2025装修合同书附加协议
- 2025第三次结构混凝土工程合同
- 2025年地震前兆观测仪器合作协议书
- 2025年个体司机劳务合同
- 2025外卖配送服务合同模板
- 神经外科科室质量管理小组工作制度
- 山东省2024年夏季普通高中学业水平合格考试地理试题02(解析版)
- 英语四级模拟试题(附答案)
- 福建晋华的测评题库
- 干部履历表填写范本(中共中央组织部1999年)
- 水库溢洪道毕业设计
- 《中国建筑的特征》课件++2023-2024学年统编版高中语文必修下册
- 2024年中层干部选拔笔试试题卷
- 市政工程施工组织设计方案
- 2024-2030年中国汽车座椅行业市场发展分析及竞争格局与投资前景研究报告
- 13J933-2体育场地与设施(二)
评论
0/150
提交评论