




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知反比例函数的解析式为,则的取值范围是A. B. C. D.2.反比例函数y=的图象位于()A.第一、三象限 B.第二、三象限C.第一、二象限 D.第二、四象限3.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为()A. B.1.5cm C. D.1cm4.如图,等边的边长为是边上的中线,点是边上的中点.如果点是上的动点,那么的最小值为()A. B. C. D.5.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x, y=x2-3A.14B.12C.36.若将抛物线y=2(x+4)2﹣1平移后其顶点落y在轴上,则下面平移正确的是()A.向左平移4个单位 B.向右平移4个单位C.向上平移1个单位 D.向下平移1个单位7.将函数的图象向右平移个单位,再向下平移个单位,可得到的抛物线是()A. B.C. D.8.下列事件中,必然事件是()A.打开电视,正在播放宜春二套 B.抛一枚硬币,正面朝上C.明天会下雨 D.地球绕着太阳转9.图中几何体的俯视图是()A. B. C. D.10.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25π B.65π C.90π D.130π11.如图,抛物线交x轴的负半轴于点A,点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上.过点Aʹ作x轴的平行线交抛物线于另一点C,则点Aʹ的纵坐标为()A.1.5 B.2 C.2.5 D.312.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.二、填空题(每题4分,共24分)13.用如图所示的两个转盘(分别进行四等分和三等分),设计一个“配紫色”的游戏(红色与蓝色可配成紫色),则能配成紫色的概率为__________.14.抛物线在对称轴左侧的部分是上升的,那么的取值范围是____________.15.一辆汽车在行驶过程中,路程(千米)与时间(小时)之间的函数关系如图所示.当时,关于的函数解析式为,那么当时,关于的函数解析式为________.16.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米,则这个建筑物的高度是__________.17.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x轴、y轴的交点分别为A,B,点P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0;②x=3是ax2+bx+3=0的一个根;③△PAB周长的最小值是+3.其中正确的是________.18.已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为______.三、解答题(共78分)19.(8分)如图是由两个长方体组成的几何体,这两个长方体的底面都是正方形,画出图中几何体的主视图、左视图和俯视图.20.(8分)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)21.(8分)(1)解方程:(2)某快递公司,今年三月份与五月份完成投递的快递总件数分别为万件和万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均増长率.22.(10分)我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知的两条弦,则、互为“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半径为5,一条弦,则弦的“十字弦”的最大值为______,最小值为______.(2)如图1,若的弦恰好是的直径,弦与相交于,连接,若,,,求证:、互为“十字弦”;(3)如图2,若的半径为5,一条弦,弦是的“十字弦”,连接,若,求弦的长.23.(10分)定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.24.(10分)如图①,矩形中,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.(1)特殊情形:如图②,发现当过点时,也恰好过点,此时是否与相似?并说明理由;(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设时,的面积为,试用含的代数式表示;①在旋转过程中,若时,求对应的的面积;②在旋转过程中,当的面积为4.2时,求对应的的值.25.(12分)如图,在中,,为边上的中点,交于点,.(1)求的值;(2)若,求的值.26.文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知(一次拿到7元本).(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.2、A【分析】由反比例函数k>0,函数经过一三象限即可求解;【详解】∵k=2>0,∴反比例函数经过第一、三象限;故选:A.【点睛】本题考查的是反比例函数的图像与性质,比较简单,需要熟练掌握反比例函数的图像与性质.3、D【详解】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,解得:r=1.故选D.4、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点G.∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点C关于AD的对称点为点B,∴BE就是EP+CP的最小值.∴G点就是所求点,即点G与点P重合,∵等边△ABC的边长为8,E为AC的中点,∴CE=4,BE⊥AC,在直角△BEC中,BE=,∴EP+CP的最小值为,故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.5、C【解析】分析:从四张卡片中,抽出y随x的增大而增大的有y=2x, ∵四张卡片中,抽出y随x的增大而增大的有y=2x, ∴取出的卡片上的函数是y随x的增大而增大的概率是346、B【分析】抛物线y=2(x+4)2﹣1的顶点坐标为(﹣4,﹣1),使平移后的函数图象顶点落在y轴上,则原抛物线向右平移4个单位即可.【详解】依题意可知,原抛物线顶点坐标为(﹣4,﹣1),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向右平移4个单位即可.故选:B.【点睛】此题考察抛物线的平移规律,根据规律“自变量左加右减,函数值上加下减”得到答案.7、A【分析】根据图象平移的过程易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】解:原抛物线的顶点为,向右平移1个单位,再向下平移3个单位,那么新抛物线的顶点为;可设新抛物线的解析式为,代入得:,故选:A.【点睛】主要考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.8、D【解析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【解析】本题考查了三视图的知识找到从上面看所得到的图形即可.从上面看可得到三个矩形左右排在一起,中间的较大,故选D.10、B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.11、B【分析】先求出点A坐标,利用对称可得点横坐标,代入可得纵坐标.【详解】解:令得,即解得点B是y轴的正半轴上一点,点A关于点B的对称点Aʹ恰好落在抛物线上点的横坐标为1当时,所以点Aʹ的纵坐标为2.故选:B【点睛】本题考查了二次函数的图像,熟练利用函数解析式求点的坐标是解题的关键.12、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、【分析】根据已知列出图表,求出所有结果,即可得出概率.【详解】列表得:红黄绿蓝红(红,红)(红,黄)(红,绿)(红,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)蓝(蓝,红)(蓝,黄)(蓝,绿)(蓝,蓝)所有等可能的情况数有12种,其中配成紫色的情况数有3种,
∴P配成紫色=故答案为:【点睛】此题主要考查了列表法求概率,根据已知列举出所有可能,进而得出配紫成功概率是解题关键.14、【分析】利用二次函数的性质得到抛物线开口向下,则a-1<0,然后解不等式即可.【详解】∵抛物线y=(a-1)x1在对称轴左侧的部分是上升的,
∴抛物线开口向下,
∴a-1<0,解得a<1.
故答案为a<1.【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.15、【分析】将x=1代入得出此时y的值,然后设当1≤x≤2时,y关于x的函数解析式为y=kx+b,再利用待定系数法求一次函数解析式即可.【详解】解:∵当时0≤x≤1,y关于x的函数解析式为y=1x,
∴当x=1时,y=1.
又∵当x=2时,y=11,
设当1<x≤2时,y关于x的函数解析式为y=kx+b,将(1,1),(2,11)分别代入解析式得,,解得,所以,当时,y关于x的函数解析式为y=100x-2.故答案为:y=100x-2.【点睛】本题考查了一次函数的应用,主要利用了一次函数图象上点的坐标特征,待定系数法求一次函数解析式,比较简单.16、1米【分析】设建筑物的高度为x,根据物高与影长的比相等,列方程求解.【详解】解:设建筑物的高度为x米,由题意得,
,解得x=1.故答案为:1米.【点睛】本题考查了相似三角形的应用,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.17、①②③【分析】①根据对称轴方程求得的数量关系;②根据抛物线的对称性知抛物线与x轴的另一个交点的横坐标是3;③利用两点间线段最短来求△PAB周长的最小值.【详解】①根据图象知,对称轴是直线,则,即,故①正确;②根据图象知,点A的坐标是,对称轴是,则根据抛物线关于对称轴对称的性质知,抛物线与轴的另一个交点的坐标是,所以是的一个根,故②正确;
③如图所示,点关于对称的点是,即抛物线与轴的另一个交点.
连接与直线x=1的交点即为点,此时的周长最小,
则周长的最小值是的长度.
∵,
∴,,∴周长的最小值是,故③正确.
综上所述,正确的结论是:①②③.
故答案为:①②③.【点睛】本题考查的是二次函数综合题,涉及到二次函数图象与系数的关系,二次函数图象的性质以及两点之间直线最短.解答该题时,充分利用了抛物线的对称性.18、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了4个单位,写出抛物线解析式即可.【详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(-2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或.故答案为或.【点睛】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位.三、解答题(共78分)19、如图所示见解析.【分析】从正面看,下面一个长方形,上面左边一个长方形;从左面看,下面一个长方形,上面左边一个长方形;从上面看,一个正方形左上角一个小正方形,依此画出图形即可.【详解】如图所示.【点睛】此题考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.20、(1)这个车库的高度AB为5米;(2)斜坡改进后的起点D与原起点C的距离为9.7米.【解析】(1)根据坡比可得=,利用勾股定理求出AB的长即可;(2)由(1)可得BC的长,由∠ADB的余切值可求出BD的长,进而求出CD的长即可.【详解】(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i==,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC=,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】此题主要考查了坡角的定义以、锐角的三角函数及勾股定理等知识,正确求出BC,BD的长是解题关键.21、(1);(2)该快递公司投递总件数的月平均增长率为10%.【分析】(1)用因式分解法即可求解;(2)五月份完成投递的快递总件数=三月份完成投递的快递总件数×(1+x)2,进而列出方程,解方程即可.【详解】(1)∴∴4x-3=0或2x+1=0∴(2)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(不合题意舍去)答:该快递公司投递总件数的月平均增长率为10%.【点睛】此题主要考查了一元二次方程的应用---增长率问题,根据题意正确用未知数表示出五月份完成投递的快递总件数是解题关键.22、(1)10,6;(2)见解析;(3).【分析】(1)根据“十字弦”定义可得弦的“十字弦”为直径时最大,当CD过A点或B点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH⊥CD,根据“十字弦”定义可得;(3)过O作OE⊥AB于点E,作OF⊥CD于点F,利用垂径定理得出OE=3,由正切函数得出AH=DH,设DH=x,在Rt△ODF中,利用线段和差将边长用x表示,根据勾股定理列方程求解.【详解】解:(1)当CD为直径时,CD最大,此时CD=10,∴弦的“十字弦”的最大值为10;当CD过A点时,CD长最小,即AM的长度,过O点作ON⊥AM,垂足为N,作OG⊥AB,垂足为G,则四边形AGON为矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)证明:如图,连接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直径,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互为“十字弦”.(3)如图,过O作OE⊥AB于点E,作OF⊥CD于点F,连接OA,OD,则四边形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,设DH=,则AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=【点睛】本题考查圆的相关性质,利用垂径定理,相似三角形等知识是解决圆问题的常用手段,对结合学过的知识和方法的基础上,用新的方法和思路来解决新题型或新定义的能力是解答此题的关键.23、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成比例且夹角相等,证明△APC∽△CAB即可;(2)分类讨论:△CPA∽△CAB和△BPA∽△BAC,分别求得P点的坐标;(3)先求得点D的坐标,说明点G(5,)、S(3,-2)在直线AC:上,证得△ABC△SGB,再证得△GBS∽△GCB,说明点S是△GBC的自相似点;又证得△DBG△DSB,说明点S是△GBD的自相似点.从而说明S(3,-2)是△GBD与△GBC公共的自相似点.【详解】(1)如图,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠CAB,∴△APC∽△CAB,故点P是△ABC的自相似点;(2)点P只能在BC上,①△CPA∽△CAB,如图,由(1)得:AC,AB,又,∵△CPA∽△CAB,∴,∴,∴,过点P作PD∥y轴交轴于D,∴,,∴,,∴,,P点的坐标为(,)②△BPA∽△BAC,如图,由前面获得的数据:AB,,∵△BPA∽△BAC,∴,∴,∴,过点P作PE∥y轴交轴于E,∴,∴,∴,,∴,P点的坐标为(,);(3)存在.当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).理由如下:如图:设直线AC的解析式为:,
∴,解得:,∴直线AC的解析式为:,过点D作DE⊥x轴于点E,
∵∠CBO+∠DBE=90,∠EDB+∠DBE=90,∴∠CBO=∠EDB,∴,∴,设BE=a,则DE=3a,∴OE=3-a,∴点D的坐标为(3-a,-3a),∵点D在直线AC上,∴,解得:,∴点D的坐标为(,);如下图:当点G的坐标为(5,)时,△GBD与△GBC公共的自相似点为S(3,).直线AC的解析式为:,
∵,,∴点G、点S在直线AC上,过点G作GH⊥x轴于点H,∵,∴,由S(3,)、B(3,0)知BS⊥x轴,∴△AED、△ABS、△AHG为等腰直角三角形,∵D(,),S,G(,∴,,B,,,,,,,,在△ABC和△SGB中∵,,∴,∵∴∴△ABC△SGB∴∠SBG=∠BCA,又∠SGB=∠BGC,∴△GBS∽△GCB,∴点S是△GBC的自相似点;在△DBG和△DSB中,∵,,∴,且,∴△DBG△DSB;∴点S是△GBD的自相似点.∴S(3,)是△GBD与△GBC公共的自相似点.【点睛】本题主要考查了相似三角形的判定,涉及的知识有:平面内点的特征、待定系数法求直线的解析式、等腰直角三角形的判定和性质、勾股定理,读懂题意,理清“自相似点”的概念是解题的关键.24、(/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 羽绒制品市场细分与目标客户定位考核试卷
- 海洋生态保护与海洋环境保护与渔业资源环境保护与利用服务考核试卷
- 耐火材料施工技术与质量控制考核试卷
- 纤维板生产效率优化考核试卷
- 电子书与物联网技术的融合应用考核试卷
- 建筑设计院项目管理与运营
- 聚乙烯醇缩丙酮纤维在环保纸质材料的应用考核试卷
- 肉制品加工业的供需平衡与市场调节机制考核试卷
- 私募股权投资跨境投资与并购考核试卷
- 光缆的耐辐射性能研究考核试卷
- 《飞机结构与系统》课件-机翼结构
- 运动与身体教育智慧树知到期末考试答案章节答案2024年温州大学
- 电梯维保服务考核标准及评分办法
- (正式版)JBT 3300-2024 平衡重式叉车 整机试验方法
- 2024全新校医合作协议(重点条款版)
- 小脑梗死的护理查房
- 水产养殖公司合伙人股权分配协议
- 急救医疗资源整合优化研究
- 牛津译林7A-Unit3、4单元复习
- 专题四“挺膺担当”主题团课
- 国家义务教育质量监测初中美术试题
评论
0/150
提交评论