广西贺州市2022-2023学年数学九年级上册期末联考模拟试题含解析_第1页
广西贺州市2022-2023学年数学九年级上册期末联考模拟试题含解析_第2页
广西贺州市2022-2023学年数学九年级上册期末联考模拟试题含解析_第3页
广西贺州市2022-2023学年数学九年级上册期末联考模拟试题含解析_第4页
广西贺州市2022-2023学年数学九年级上册期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.设,,是抛物线(,为常数,且)上的三点,则,,的大小关系为()A. B. C. D.2.已知菱形的边长为,若对角线的长为,则菱形的面积为()A. B. C. D.3.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.4.在平面直角坐标系中,将横纵坐标之积为1的点称为“好点”,则函数的图象上的“好点”共有()A.1个 B.2个 C.3个 D.4个5.如图,在Rt△ABC中,AC=6,AB=10,则sinA的值()A. B. C. D.6.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A. B. C. D.7.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是()A. B. C. D.8.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米9.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A. B. C. D.10.下列关于三角形的内心说法正确的是()A.内心是三角形三条角平分线的交点B.内心是三角形三边中垂线的交点C.内心到三角形三个顶点的距离相等D.钝角三角形的内心在三角形外二、填空题(每小题3分,共24分)11.布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是__________.12.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第_____象限.13.如图,正方形的边长为8,点在上,交于点.若,则长为__.14.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是________

.15.已知⊙O的直径为10cm,线段OP=5cm,则点P与⊙O的位置关系是__.16.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)17.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.18.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为___度.三、解答题(共66分)19.(10分)解方程:(1)x2﹣2x+1=0(2)2x2﹣3x+1=020.(6分)如图所示,在中,,,,点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.连接,设运动时间为.(1)当为何值时,?(2)设的面积为,求与的函数关系式,并求出当为何值时,取得最大值?的最大值是多少?21.(6分)如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接.(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_____________;(3)点是第四象限内抛物线上的动点,连接和.求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(8分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?23.(8分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.24.(8分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.25.(10分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,,联结AC、OB,若CD=40,AC=20.(1)求弦AB的长;(2)求sin∠ABO的值.26.(10分)已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据二次函数的性质得到抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=-1,

而A(-2,y1)离直线x=-1的距离最近,C(2,y1)点离直线x=-1最远,

∴y1<y2<y1.

故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.2、B【分析】先求出对角线AC的长度,再根据“菱形的面积等于对角线乘积的一半”,即可得出答案.【详解】根据题意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD为菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案选择B.【点睛】本题考查的是菱形,难度适中,需要熟练掌握菱形面积的两种求法.3、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.4、C【分析】分x≥0及x<0两种情况,利用“好点”的定义可得出关于x的一元二次方程,解之即可得出结论.【详解】当x≥0时,,即:,

解得:,(不合题意,舍去),当x<0时,,即:,

解得:,,∴函数的图象上的“好点”共有3个.

故选:C.【点睛】本题考查了一次函数图象上点的坐标特征及解一元二次方程,分x≥0及x<0两种情况,找出关于x的一元二次方程是解题的关键.5、A【分析】根据勾股定理得出BC的长,再根据sinA=代值计算即可.【详解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故选:A.【点睛】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.6、A【解析】试题解析:是平行四边形,故选A.7、A【解析】根据垂直定义证出∠A=∠DCB,然后根据余弦定义可得答案.【详解】解:∵CD是斜边AB上的高,∴∠BDC=90°,∴∠B+∠DCB=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠DCB,∴cosA=故选A.【点睛】考查了锐角函数定义,关键是掌握余弦=邻边:斜边.8、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【详解】如图,根据题意,易得△MBA∽△MCO,

根据相似三角形的性质可知,即,

解得AM=5m.

则小明的影子AM的长为5米.

故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.9、B【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种,则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是;故选:.【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率所求情况数与总情况数之比.10、A【分析】根据三角形内心定义即可得到答案.【详解】∵内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心,∴A正确,B、C、D均错误,故选:A.【点睛】此题考查三角形的内心,熟记定义是解题的关键.二、填空题(每小题3分,共24分)11、【分析】直接根据概率公式求解.【详解】解:随机摸出一个球是红色的概率=.

故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.12、一【分析】由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m与n的正负,即可作出判断.【详解】根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键.13、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【点睛】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.14、【分析】先求出这个口袋里一共有球的个数,然后用红球的个数除以球的总个数即可.【详解】因为共有5个球,其中红球由3个,所以从中任意摸出一个球是红球的概率是,故答案为.【点睛】本题考查了概率公式,掌握概率=所求情况数与总情况数之比是解题的关键.15、点P在⊙O上【分析】知道圆O的直径为10cm,OP的长,得到OP的长与半径的关系,求出点P与圆的位置关系.【详解】因为圆O的直径为10cm,所以圆O的半径为5cm,又知OP=5cm,所以OP等于圆的半径,所以点P在⊙O上.故答案为点P在⊙O上.【点睛】本题考查了点与圆的位置关系,根据OP的长和圆O的直径,可知OP的长与圆的半径相等,可以确定点P的位置.16、【解析】抛物线的对称轴为:x=1,∴当x>1时,y随x的增大而增大.∴若x1>x2>1

时,y1>y2

.故答案为>17、-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得18、15【分析】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】解:∵∠AOB=70°-40°=30°∴∠1=∠AOB=15°故答案为:15°.【点睛】本题考查圆周角定理.三、解答题(共66分)19、(1)x1=x2=1;(2)x1=1,x2=【分析】(1)利用配方法解一元二次方程即可得出答案;(2)利用十字相乘法解一元二次方程即可得出答案.【详解】解:(1)x2﹣2x+1=0(x-1)2=0∴x1=x2=1(2)2x2﹣3x+1=0(2x-1)(x-1)=0∴x1=1,x2=【点睛】本题考查的是解一元二次方程,解一元二次方程主要有以下几种解法:直接开方法、配方法、公式法和因式分解法.20、(1)(2)S=−(t−)2+,t=,S有最大值,最大值为.【分析】(1)利用分线段成比例定理构建方程即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题即可.【详解】(1)∵PQ⊥AC,∴∠AQP=∠C=90°,∴PQ∥BC,∴,在Rt△ACB中,AB=∴,解得t=,∴t为时,PQ⊥AC.(2)如图,作PH⊥AC于H.∵PH∥BC,∴,∴,∴PH=(5−t),∴S=•AQ•PH=×t×(5−t)=−t2+t=−(t−)2+,∵−<0,∴t=,S有最大值,最大值为.【点睛】本题考查平行线分线段成比例定理,二次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、、、为顶点的四边形是平行四边形,,点坐标为,,.【分析】(1)将点,代入即可求解;

(2)BC与对称轴的交点即为符合条件的点,据此可解;

(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;

(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1)抛物线过点,解得:抛物线解析式为.(2)点,∴抛物线对称轴为直线点在直线上,点,关于直线对称,当点、、在同一直线上时,最小.抛物线解析式为,∴C(0,-6),设直线解析式为,解得:直线:,,故答案为:.(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为.(4)存在点,使以点、、、为顶点的四边形是平行四边形.

设N(x,y),M(,m),

①四边形CMNB是平行四边形时,CM∥NB,CB∥MN,

∴x=,∴y==,

∴N(,);

②四边形CNBM是平行四边形时,CN∥BM,CM∥BN,

∴x=,∴y==

∴N(,);

③四边形CNMB是平行四边形时,CB∥MN,NC∥BM,,

∴x=,∴y==

∴N(,);点坐标为(,),(,),(,).【点睛】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键.22、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块【分析】(1)根据每块瓷砖的面积S=楼体外表的总面积÷所需的瓷砖块数n块,求出即可;(2)设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x块,再用n=625000求出即可.【详解】解;(1)∵每块瓷砖的面积楼体外表的总面积÷所需的瓷砖块数块,由此可得出与的函数关系式是:(2)当时,设用灰瓷砖块,则白瓷砖、蓝瓷砖分别为块、块,依据题意得出:,解得:,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块.【点睛】此题主要考查了反比例函数的应用,根据已知得出瓷砖总块数进而得出等式方程是解题关键.23、(1)AE=;(2)证明见解析.【分析】(1)根据题意可得:AB=AC=6,可得AO=3,根据勾股定理可求BO的值,根据S△ABO=AB×BO=BO×AE,可求AE的长度.(2)延长AE到P,使AP=BF,可证△ABF≌△APC,可得AF=PC.则GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可证△AGH≌△PHC,结论可得.【详解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四边形ABCD是平行四边形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如图:延长AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC【点睛】本题考查了平行四边形的性质,全等三角形的性质和判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论