吉林长春市宽城区2022-2023学年数学九年级上册期末质量跟踪监视试题含解析_第1页
吉林长春市宽城区2022-2023学年数学九年级上册期末质量跟踪监视试题含解析_第2页
吉林长春市宽城区2022-2023学年数学九年级上册期末质量跟踪监视试题含解析_第3页
吉林长春市宽城区2022-2023学年数学九年级上册期末质量跟踪监视试题含解析_第4页
吉林长春市宽城区2022-2023学年数学九年级上册期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个2.表中所列的7对值是二次函数图象上的点所对应的坐标,其中x……y…7m14k14m7…根据表中提供的信息,有以下4个判断:①;②;③当时,y的值是k;④其中判断正确的是()A.①②③ B.①②④ C.①③④ D.②③④3.在平面直角坐标系中,将点向下平移个单位长度,所得到的点的坐标是()A. B.C. D.4.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.55.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE的面积是()A.6 B.9 C.21 D.256.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2π B.3π C.4π D.π7.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有()A.3个 B.4个 C.5个 D.6个8.已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定9.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.10.计算,正确的结果是()A.2 B.3a C. D.二、填空题(每小题3分,共24分)11.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.12.若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是____.13.方程x2=x的解是_____.14.把多项式分解因式的结果是.15.抛物线y=x2﹣4x+3的顶点坐标为_____.16.如图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为__.17.抛物线的顶点坐标是______.18.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.三、解答题(共66分)19.(10分)如图:已知▱ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G.(1)若AB=3,BC=4,CE=2,求CG的长;(2)证明:AF2=FG×FE.20.(6分)利用公式法解方程:x2﹣x﹣3=1.21.(6分)如图,在一条河流的两岸分别有A、B、C、D四棵景观树,已知AB//CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度(参考数值:,,)22.(8分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.23.(8分)如图,一次函数y=﹣2x+8与反比例函数(x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于D点.(1)求反比例函数的解析式.(2)在第一象限内,根据图象直接写出一次函数值大于反比例函数值时自变量x的取值范围.24.(8分)如图,在中,为边的中点,为线段上一点,联结并延长交边于点,过点作的平分线,交射线于点.设.(1)当时,求的值;(2)设,求关于的函数解析式,并写出的取值范围;(3)当时,求的值.25.(10分)粤东农批﹒2019球王故里五华马拉松赛于12月1日在广东五华举行,组委会为了做好运动员的保障工作,沿途设置了4个补给站,分别是:A(粤东农批)、B(奥体中心)、C(球王故里)和D(滨江中路),志愿者小明和小红都计划各自在这4个补给站中任意选择一个进行补给服务,每个补给站被选择的可能性相同.(1)小明选择补给站C(球王故里)的概率是多少?(2)用树状图或列表的方法,求小明和小红恰好选择同一个补给站的概率.26.(10分)如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.2、B【分析】根据表格得到二次函数的性质,分别求出开口方向,对称轴、最值即可解题.【详解】解:由表格中的数据可知,当时,y的值先变大后减小,说明二次函数开口向下,所以①正确;同时可以确定对称轴在与之间,所以在对称轴左侧可得②正确;因为不知道横坐标之间的取值规律,所以无法说明对称轴是直线x=,所以此时顶点的函数值不一定等于k,所以③当时,y的值是k错误;由题可知函数有最大值,此时,化简整理得:④正确,综上正确的有①②④,故选B.【点睛】本题考查了二次函数的性质,中等难度,将表格信息转换成有效信息是解题关键.3、B【解析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(2,3-1),再解即可.【详解】解:将点P向下平移1个单位长度所得到的点坐标为(2,3-1),即(2,2),故选:B.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.4、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.5、C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四边形DBCE=S△ABC-S△ADE=25-4=21,故选C.6、A【分析】连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【详解】解:连接OC、OB∵六边形ABCDEF为正六边形,∴∠COB==60°,∵OA=OB∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为:.故选:A.【点睛】此题考查了扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,解题的关键是掌握扇形的弧长公式.7、A【分析】根据对称轴、等弧、圆周角定理、三角形外接圆的定义及弦、弧、圆心角的相互关系分别判断后即可解答.【详解】①对称轴是直线,而直径是线段,圆的每一条直径所在直线都是它的对称轴,①错误;②在同圆或等圆中,长度相等的两条弧是等弧,不在同圆或等圆中不一定是等弧,②错误;③在同圆或等圆中,相等的弦所对的弧也相等,不在同圆或等圆中,相等的弦所对的弧不一定相等,③错误;④根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,④正确;⑤根据圆周角定理推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径,⑤正确;⑥根据三角形外接圆的定义可知,任何一个三角形都有唯一的外接圆,⑥正确.综上,正确的结论为③④⑤.故选A.【点睛】本题了考查对称轴、等弧、圆周角、外接圆的定义及其相互关系,熟练运用相关知识是解决问题的关键.8、C【解析】由⊙O的半径分别是3,点P到圆心O的距离为4,根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴点P与⊙O的位置关系是:点在圆外.故选:C.【点睛】本题考查了点与圆的位置关系.注意若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.9、D【分析】根据三角形全等的判定定理逐项判断即可.【详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【点睛】本题考查了三角形全等的判定定理,熟记各定理是解题关键.10、D【分析】根据同底数幂除法法则即可解答.【详解】根据同底数幂除法法则(同底数幂相除,底数不变,指数相减)可得,a6÷a1=a6﹣1=a1.故选D.【点睛】本题考查了整式除法的基本运算,必须熟练掌握运算法则.二、填空题(每小题3分,共24分)11、310【分析】利用配方法将函数解析式转化为顶点式,利用二次函数的性质,可求得铅球行进的最大高度;铅球推出后落地时,高度y=0,把实际问题可理解为当y=0时,求得x的值就是铅球落地时的水平距离.【详解】∵y=﹣x2+x+,∴y=﹣(x﹣4)2+3因为﹣<0所以当x=4时,y有最大值为3.所以铅球推出后最大高度是3m.令y=0,即0=﹣(x﹣4)2+3解得x1=10,x2=﹣2(舍去)所以铅球落地时的水平距离是10m.故答案为3、10.【点睛】此题考查了函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解.正确解答本题的关键是掌握二次函数的性质.12、k≤5【详解】解:由题意得,42-4×1×(k-1)≥0,解之得k≤5.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△<0时,一元二次方程没有实数根.13、x1=0,x2=1【分析】利用因式分解法解该一元二次方程即可.【详解】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题的关键.14、m(4m+n)(4m﹣n).【解析】试题分析:原式==m(4m+n)(4m﹣n).故答案为m(4m+n)(4m﹣n).考点:提公因式法与公式法的综合运用.15、(2,﹣1).【解析】先把函数解析式配成顶点式得到y=(x-2)2-1,然后根据顶点式即可得到顶点坐标.解:y=(x-2)2-1,

所以抛物线的顶点坐标为(2,-1).

故答案为(2,-1).“点睛”本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x-h)2+k;两根式:y=a(x-x1)(x-x2).16、1【分析】过点F作FC⊥x轴于点C,设点F的坐标为(a,b),从而得出OC=a,FC=b,根据矩形的性质可得AB=FC=b,BF=AC,结合已知条件可得OA=3a,BF=AC=2a,根据点E、F都在反比例函数图象上可得EA=,从而求出BE,然后根据三角形的面积公式即可求出ab的值,从而求出k的值.【详解】解:过点F作FC⊥x轴于点C,设点F的坐标为(a,b)∴OC=a,FC=b∵∴四边形FCAB是矩形∴AB=FC=b,BF=AC∵∴,即AC∴OC=OA-AC=a解得:OA=3a,BF=AC=2a∴点E的横坐标为3a∵点E、F都在反比例函数的图象上∴∴点E的纵坐标,即EA=∴BE=AB-EA=∵∴即解得:∴故答案为:1.【点睛】此题考查的是反比例函数与图形的面积问题,掌握矩形的判定及性质、反比例函数比例系数与图形的面积关系和三角形的面积公式是解决此题的关键.17、(0,-3).【解析】试题解析:二次函数,对称轴当时,顶点坐标为:故答案为:18、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.三、解答题(共66分)19、(1)1;(2)证明见解析【解析】(1)根据平行四边形的性质得到AB∥CD,证明△EGC∽△EAB,根据相似三角形的性质列出比例式,代入计算即可;(2)分别证明△DFG∽△BFA,△AFD∽△EFB,根据相似三角形的性质证明.【详解】(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴△EGC∽△EAB,∴,即,解得,CG=1;(2)∵AB∥CD,∴△DFG∽△BFA,∴,∴AD∥CB,∴△AFD∽△EFB,∴,∴,即AF2=FG×FE.【点睛】本题考查的是平行四边形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.20、x1=,x2=.【分析】观察方程为一般形式,找出此时二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于1,故利用求根公式可得出方程的两个解.【详解】解:x2﹣x﹣3=1,∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>1,∴x==,∴x1=,x2=.【点睛】此题考查了利用公式法来求一元二次方程的解,利用此方法解方程时,首先将方程化为一般形式,找出相应的a,b及c的值,代入b2-4ac中求值,当b2-4ac≥1时,可代入求根公式来求解.21、m【分析】分别过C,D作CF⊥AE于F,DG⊥AE于F,构建直角三角形解答即可.【详解】分别过C,D作CF⊥AE于F,DG⊥AE于F,

∴∠AGD=∠BFC=90°,

∵AB∥CD,

∴∠FCD=90°,

∴四边形CFGD是矩形,

∴CD=FG=30m,CF=DG,

在直角三角形ADG中,∠DAG=45°,

∴AG=DG,

在直角三角形BCF中,∠FBC=73°,

∴,

∴,

∵AG=AB+BF+FG=DG,

即10+BF+30=,

解得:BF=m,则,

答:这条河的宽度为m.【点睛】本题考查解直角三角形的应用,要求学生能借助辅助线构造直角三角形并解直角三角形.22、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明△≌△,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得:,∴,即,∴△≌△,∴AC′=BD′,,设BD′与OA相交于点N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.23、(1)(x>0);(2)1<x<1.【分析】(1)把A(m,6),B(1,n)两点分别代入y=﹣2x+8可求出m、n的值,确定A点坐标为(1,6),B点坐标为(1,2),然后利用待定系数法求反比例函数的解析式;(2)观察函数图象得到当1<x<1,一次函数的图象在反比例函数图象上方.【详解】(1)把A(m,6),B(1,n)两点分别代入y=﹣2x+8得6=﹣2m+8,n=﹣2×1+8,解得m=1,n=2,∴A点坐标为(1,6),B点坐标为(1,2),把A(1,6)代入y=(x>0)求得k=1×6=6,∴反比例函数解析式为(x>0);(2)在第一象限内,一次函数值大于反比例函数值时自变量x的取值范围是1<x<1.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式以及观察图象的能力.24、(1);(2);(3)或2.【分析】(1)由平行四边形ABCD,得到AD与BC平行且相等,由两直线平行得到两对内错角相等,进而确定出三角形BEF与三角形AGF相似,由相似得比例,把x=1代入已知等式,结合比例式得到AG=BE,AD=AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论