




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A B.C. D.2.已知集合,
,则(
)A. B.C. D.3.若,,则下列结论正确的是()A. B.C. D.a,b大小不确定4.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.5.已知,那么下列结论正确的是()A. B.C. D.6.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.7.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.8.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.9.函数的值域为()A. B.C. D.10.,是两个平面,,是两条直线,则下列命题中错误的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么11.已知集合,,则中元素的个数是()A. B.C. D.12.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.求值:2+=____________14.已知函数,则=_________15.设为锐角,若,则的值为_______.16.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是_________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,以轴的非负半轴为始边作角与,它们的终边分别与单位圆相交于点,已知点的横坐标为(1)求的值;(2)若,求的值18.已知二次函数的图象过点,且与轴有唯一的交点.(1)求表达式;(2)设函数,若上是单调函数,求实数的取值范围;(3)设函数,记此函数的最小值为,求的解析式.19.某工厂以xkg/h的速度生产运输某种药剂(生产条件要求边生产边运输且3<x≤10),每小时可以获得的利润为100(2x+1+(1)要使生产运输该药品3h获得的利润不低于4500元,求x(2)x为何值时,每小时获得的利润最小?最小利润是多少?20.已知.(1)求,的值;(2)求的值.21.已知函数.(1)判断奇偶性;(2)当时,判断的单调性并证明;(3)在(2)的条件下,若实数满足,求的取值范围.22.(1)求直线与的交点的坐标;(2)求两条平行直线与间的距离
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A2、D【解析】因,,故,应选答案D3、B【解析】根据作差比较法可得解.【详解】解:因为,所以故选:B.4、A【解析】由图观察出和后代入最高点,利用可得,进而得到解析式【详解】解:由图可知:,,,,代入点,得,,,,,,故选.【点睛】本题考查了由的部分图象确定其表达式,属基础题.5、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.6、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D7、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.8、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.9、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.10、D【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断;【详解】A.如果,,,由面面垂直的判定定理得,故正确;B.如果,,由面面平行的性质定理得,故正确;C.如果,,,由线面平行的性质定理得,故正确;D如果,,,那么相交或平行,故错误;故选:D【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题.11、B【解析】根据并集的定义进行求解即可.【详解】由题意得,,显然中元素的个数是5.故选:B12、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、-3【解析】利用对数、指数的性质和运算法则求解【详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【点睛】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用14、【解析】按照解析式直接计算即可.【详解】.故答案为:-3.15、【解析】由条件求得的值,利用二倍角公式求得和的值,再根据,利用两角差的正弦公式计算求得结果【详解】∵为锐角,,∴,∴,故,故答案为.【点睛】本题主要考查同角三角函数的基本关系、两角和差的正弦公式、二倍角公式的应用,属于中档题16、(0,1)【解析】将方程的零点问题转化成函数的交点问题,作出函数的图象得到m的范围【详解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)与y=m的图象,要使函数g(x)=f(x)﹣m有3个零点,则y=f(x)与y=m的图象有3个不同的交点,所以0<m<1,故答案为(0,1)【点睛】本题考查等价转化的能力、利用数形结合思想解题的思想方法是重点,要重视三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)根据三角函数的定义,求三角函数,代入求值;(2)由条件可知,,利用诱导公式,结合三角函数的定义,求函数值.【小问1详解】的横坐标为,.【小问2详解】由题可得,,.18、(1)(2)或(3)见解析【解析】(1)由已知条件分别求出的值,得出解析式;(2)求出函数的表达式,由已知得出区间在对称轴的一侧,进而求出的范围;(3)函数,对称轴,图象开口向上,讨论不同情况下在上的单调性,可得函数的最小值的解析式试题解析:(1)依题意得,,解得,,,从而;(2),对称轴为,图象开口向上当即时,在上单调递增,当即时,在上单调递减,综上,或(3),对称轴为,图象开口向上当即时,在上单调递增,此时函数的最小值当即时,在上递减,在上递增此时函数的最小值;当即时,在上单调递减,此时函数的最小值;综上,函数的最小值.点睛:本题主要考查了二次函数解析式的求法,二次函数的单调性,二次函数在定区间上的最值问题,属于中档题.解答时要认真审题,仔细解答,注意合理地进行等价转换19、(1)[6,10];(2)当x为4kg/h时,每小时获得的利润最小,最小利润为1300元【解析】(1)由题设可得2x+1+8x-2≥15,结合3<x≤10求不等式的解集即可(2)应用基本不等式求y=100(2x+1+8x-2)的最小值,并求出对应的x【小问1详解】依题意得:3×100(2x+1+8x-2)≥4500,即2x+1+8x-2由3<x≤10,故8x-2>0,可得x2-9x+18≥0,即(x-3)(x-6)≥0,解得x≤3或x≥6∴x的取值范围为[6,10].【小问2详解】设每小时获得的利润为y.y=100(2x+1+8x-2)=100[2(x-2)+8x-2+5]≥100[22(x-2)(8x-2)+5]=100(8+5)=1300,当2(x-2)=于是当生产运输速度为4kg/h,每小时获得的利润最小,最小值为1300元20、(1),(2)【解析】(1)根据同角三角函数关系得到余弦值,正切值,利用二倍角公式求得;(2)在第一问的基础上,利用余弦的差角公式进行求解.【小问1详解】∵,且,∴,∴,.【小问2详解】21、(1)奇函数(2)增函数,证明见解析(3)【解析】(1)求出函数的定义域,再判断的关系,即可得出结论;(2)任取且,利用作差法比较的大小即可得出结论;(3)根据函数的单调性列出不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论