2022年广西贵港市港南区数学九上期末检测模拟试题含解析_第1页
2022年广西贵港市港南区数学九上期末检测模拟试题含解析_第2页
2022年广西贵港市港南区数学九上期末检测模拟试题含解析_第3页
2022年广西贵港市港南区数学九上期末检测模拟试题含解析_第4页
2022年广西贵港市港南区数学九上期末检测模拟试题含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是()A. B. C. D.2.如图,△ABC中,D是AB的中点,DE∥BC,连接BE.若AE=6,DE=5,∠BEC=90°,则△BCE的周长是()A.12 B.24 C.36 D.483.若,面积之比为,则相似比为()A. B. C. D.4.若关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,则kA.0或4 B.4或8 C.0 D.45.一元二次方程配方后可化为()A. B. C. D.6.如图,两点在反比例函数的图象上,两点在反比例函数的图象上,轴于点,轴于点,,则的值是()A.2 B.3 C.4 D.67.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1 B.2 C.3 D.48.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限9.如图,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣1210.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.二、填空题(每小题3分,共24分)11.方程(x﹣1)2=4的解为_____.12.已知正方形的一条对角线长,则该正方形的周长是___________.13.半径为10cm的半圆围成一个圆锥,则这个圆锥的高是__cm.14.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.15.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.16.已知线段,点是线段的黄金分割点(),那么线段______.(结果保留根号)17.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.18.计算:的结果为____________.三、解答题(共66分)19.(10分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).(1)甲顾客消费80元,是否可获得转动转盘的机会?(2)乙顾客消费150元,获得打折待遇的概率是多少?(3)他获得九折,八折,七折,五折待遇的概率分别是多少?20.(6分)在中,,点是的中点,连接.(1)如图1,若,求的长度;(2)如图2,过点作于点.求证:.(3)如图2,在(2)的条件下,当时,求的值.21.(6分)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.22.(8分)一个盒子中装有两个红球,一个白球和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请你用列表法和画树状图法求两次摸到的球的颜色能配成紫色的概率(说明:红色和蓝色能配成紫色)23.(8分)已知x2+xy+y=12,y2+xy+x=18,求代数式3x2+3y2﹣2xy+x+y的值.24.(8分)关于的一元二次方程的两个实数根分别为,.(1)求的取值范围;(2)若,求的值.25.(10分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.26.(10分)解方程:x2﹣x﹣12=1.

参考答案一、选择题(每小题3分,共30分)1、C【解析】∵2个红球、3个白球,一共是5个,∴从布袋中随机摸出一个球,摸出红球的概率是.故选C.2、B【解析】试题解析:△ABC中,D是AB的中点,DE∥BC,是的中点,∠BEC=90°,△BCE的周长故选B.点睛:三角形的中位线平行于第三边而且等于第三边的一半.3、C【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【详解】解:∵两个相似三角形的面积比为9:4,

∴它们的相似比为3:1.

故选:C.【点睛】此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.4、D【解析】根据已知一元二次方程有两个相等的实数根得出k≠0,Δ=(-2k)2-4×k×4=0【详解】因为关于x的一元二次方程kx2-2kx+4=0有两个相等的实数根,所以k≠0,Δ=(-2k)2【点睛】此题考查根的判别式,解题关键在于利用判别式解答.5、B【分析】根据一元二次方程配方法即可得到答案.【详解】解:∵x2+4x=3∴x2+4x+4=3+4∴(x+2)2=7故选B【点睛】此题主要考查了解一元二次方程的配方法,熟练掌握一元二次方程各种解法是解题的关键.6、D【分析】连接OA、OB、OC、OD,由反比例函数的性质得到,,结合两式即可得到答案.【详解】连接OA、OB、OC、OD,由题意得,,∵,∴,∵,∴,∴,∵AC=3,BD=2,EF=5,∴解得OE=2,∴,故选:D.【点睛】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k的几何意义是解题的关键.7、C【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC-S△PBQ=×12×6-(6-t)×2t=t2-6t+36=(t-3)2+1.∴当t=3s时,S取得最小值.故选C.【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.8、B【详解】解:将点(m,3m)代入反比例函数得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9、D【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选D.考点:反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例;数形结合.10、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.二、填空题(每小题3分,共24分)11、x1=3,x2=﹣1【解析】试题解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案为x1=3,x2=﹣1.12、【分析】对角线与两边正好构成等腰直角三角形,据此即可求得边长,即可求得周长.【详解】令正方形ABCD,对角线交于点O,如图所示;∵AC=BD=4,AC⊥BD∴AO=CO=BO=DO=2∴AB=BC=CD=AD=∴正方形的周长为故答案为.【点睛】此题主要考查正方形的性质,熟练掌握,即可解题.13、【分析】由半圆的半径可得出圆锥的母线及底面半径的长度,利用勾股定理即可求出圆锥的高.【详解】设底面圆的半径为r.∵半径为10cm的半圆围成一个圆锥,∴圆锥的母线l=10cm,∴,解得:r=5(cm),∴圆锥的高h(cm).故答案为5.【点睛】本题考查了圆锥的计算,利用勾股定理求出圆锥的高是解题的关键.14、或【解析】根据位似变换的性质计算即可.【详解】解:∵△ABC与△A'B'C'相似比为,若点C的坐标为(4,1),∴点C′的坐标为或∴点C′的坐标为或故答案为或【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.15、1【分析】设AB=a,根据平行四边形的性质分别求出弧长EF与弧长BE,即可求出的值.【详解】设AB=a,∵∴AD=1.5a,则DE=0.5a,∵平行四边形中,,∴∠D=120°,∴l1弧长EF==l2弧长BE==∴==1故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.16、【分析】根据黄金比值为计算即可.【详解】解:∵点P是线段AB的黄金分割点(AP>BP)∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.17、1.【解析】试题分析:解方程x2-13x+40=0,(x-5)(x-8)=0,∴x1=5,x2=8,∵3+4=7<8,∴x=5.∴周长为3+4+5=1.故答案为1.考点:1一元二次方程;2三角形.18、【分析】根据二次根式的乘法法则得出.【详解】.故答案为:.【点睛】本题主要考查了二次根式的乘法运算.二次根式的乘法法则:.三、解答题(共66分)19、(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)(3)P(九折);

P(八折)=

=P(七折)=P(五折)

.【分析】(1)根据顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会可知,消费80元达不到抽奖的条件;(2)根据题意乙顾客消费150元,能获得一次转动转盘的机会.根据概率的计算方法,可得答案;(3)根据概率的计算方法,可得九折,八折,七折,五折待遇的概率.【详解】(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)乙顾客消费150元,能获得一次转动转盘的机会.由于转盘被均分成16份,其中打折的占5份,所以P(打折)=.(3)九折占2份,P(九折)==;八折、七折、五折各占1份,P(八折)=,P(七折)=,P(五折)=.【点睛】本题考查概率的求法;关键是列齐所有的可能情况及符合条件的情况数目.用到的知识点为:概率=所求情况数与总情况数之比.20、(1);(2)见解析;(3).【分析】(1)由等腰直角三角形的性质可得CO=BO=AO,∠AOB=90°,由勾股定理可求解;(2)由等腰直角三角形的性质可得AD=CD,由三角形中位线可得OD=AB;(3)分别计算出OC,BC的长,即可求解.【详解】(1),点是的中点,,,;(2),是等腰直角三角形,∵,,∵,;(3),,,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,勾股定理,三角形中位线定理,灵活运用性质进行推理是本题的关键.21、(1)y=x,;(2)存在,Q1(2,1)和Q2(﹣2,﹣1);(3)2+1【分析】(1)正比例函数和反比例函数的图象都经过点M(-2,-1),待定系数法可求它们解析式;

(2)由点Q在y=x上,设出Q点坐标,表示△OBQ,由反比例函数图象性质,可知△OAP面积为1,则根据面积相等可构造方程,问题可解;(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,而点P(-1,-2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.【详解】解:(1)设正比例函数解析式为y=kx,将点M(﹣2,﹣1)坐标代入得k=,所以正比例函数解析式为y=x,同样可得,反比例函数解析式为;(2)当点Q在直线OM上运动时,设点Q的坐标为Q(m,m),于是S△OBQ=OB•BQ=×m×m=m2,而S△OAP=|(﹣1)×(﹣2)|=1,所以有,m2=1,解得m=±2,所以点Q的坐标为Q1(2,1)和Q2(﹣2,﹣1);(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,而点P(﹣1,﹣2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值,因为点Q在第一象限中双曲线上,所以可设点Q的坐标为Q(n,),由勾股定理可得OQ2=n2+=(n﹣)2+1,所以当(n﹣)2=0即n﹣=0时,OQ2有最小值1,又因为OQ为正值,所以OQ与OQ2同时取得最小值,所以OQ有最小值2,由勾股定理得OP=,所以平行四边形OPCQ周长的最小值是2(OP+OQ)=2(+2)=2+1.(或因为反比例函数是关于y=x对称,所以当Q在反比例函数时候,OQ最短的时候,就是反比例与y=x的交点时候,联立方程组即可得到点Q坐标)【点睛】此题考查一次函数反比例函数的图象和性质,解答关键是运用数形结合思想解决问题.22、.【分析】利用画树状图法得到总的可能和可能发生的结果数,即可求出概率.【详解】解:画树状图为:共有16种等可能的结果数,其中红色和蓝色的结果数4,所以摸到的两个球的颜色能配成紫色的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.23、或【分析】分别将已知的两个等式相加和相减,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代数式的值即可.【详解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴将⑤分别代入④得,x﹣y=或x﹣y=﹣,∴或当时,当时,

故答案为:或【点睛】本题考查解二元一次方程组;理解题意,将已知式子进行合理的变形,再求二元一次方程组的解是解题的关键.24、(1);(2)m=-1.【分析】(1)根据一元二次方程有两个实数根可得:△≥0,列出不等式即可求出的取值范围;(2)根据根与系数的关系,分别表示出和,然后代入已知等式即可求出m的值.【详解】(1)解:由题可知:解出:(2)解:由根与系数的关系得:,又∵∴解出:【点睛】此题考查的是求一元二次方程的参数的取值范围和参数的值,掌握一元二次方程根的情况与△的关系和根与系数的关系是解决此题的关键.25、(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,【分析】(1)根据正方形的性质,可得OA=OC,∠AOC=∠DGE,根据余角的性质,可得∠OCD=∠GDE,根据全等三角形的判定与性质,可得EG=OD=1,DG=OC=2,根据待定系数法,可得函数解析式;(2)分类讨论:若△DFP∽△COD,根据相似三角形的性质,可得∠PDF=∠DCO,根据平行线的判定与性质,可得∠PDO=∠OCP=∠AOC=90,根据矩形的判定与性质,可得PC的长;若△PFD∽△COD,根据相似三角形的性质,可得∠DPF=∠DCO,,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;(3)分类讨论:当四边形是平行四边形时,四边形是平行四边形时,四边形是平行四边形时,根据一组对边平行且相等的四边形式平行四边,可得答案.【详解】解:(1)过点作轴于点.∵四边形是边长为2的正方形,是的中点,∴,,.∵,∴.∵,∴.在和中,∴,,.∴点的坐标为.∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,将、点的坐标代入解析式,得,解得.∴抛物线的解析式为;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论