版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6课时三角恒等变换1.化简三角函数式的基本要求:(1)能求出值的要求出值来;(2)使三角函数式的项数、三角函数的种类及角的种类尽可能少;(3)使三角函数式的次数尽可能低;(4)分母中尽量不含三角函数式和根式.2.三角函数式的求值三角函数的求值主要有三种类型,即给角求值、给值求值、给值求角.(1)给角求值的关键是正确地选用公式,以便把非特殊角的三角函数相约或相消,从而化为特殊角的三角函数.(2)给值求值的关键是找出已知式与待求式之间的联系及函数的差异,一般可以适当变换已知式,求得另外函数式的值,以备应用,同时也要注意变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角的关键是先求出该角的某一三角函数式的值,其次判断该角对应区间的单调性,从而达到解题的目的.1.在△ABC中,已知2sinA·cosB=sinC,那么△ABC一定是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.正三角形解析:
∵2sinAcosB=sin(A+B),且A,B∈(0,π),∴sin(A-B)=0,且-π<A-B<π,∴A=B为等腰三角形.答案:
B
答案:
C答案:
A答案:π答案:3三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.已知三角函数式的值,求其他三角函数式的值,一般思路为:(1)先化简所求式子;(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手);(3)将已知条件代入所求式子,化简求值.三角函数实际应用问题的解题步骤(1)确立三角函数关系式y=Asin(ωx+φ)+b.(2)建立变量关系,根据题意确立A、ω、φ、b.(3)解决实际问题,作出结论. 如图为一个缆车示意图,该缆车半径为4.8m,圆上最低点与地面距离为0.8m,60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面距离是h.(1)求h与θ间的函数关系式;(2)设从OA开始转动,经过t秒后到达OB,求h与t之间的函数关系式,并求缆车到达最高点时用的最少时间是多少?【变式训练】3.某昆虫种群数量在1月1日时低至700只,而在当年7月1日时高达900只,其数量在这两个值之间按正弦曲线呈规律性变化.(1)求出种群数量关于时间t的函数解析式(t以月为单位);(2)画出种群数量关于时间t的函数图象.(2)其图象为:1.三角恒等变换的原则(1)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式;(2)消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.2.求值:主要有三类求值问题(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.从近两年的高考试题来看,利用同角三角函数的关系改变三角函数的名称,利用诱导公式、和差角公式及二倍角公式改变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届新高考物理冲刺热点复习:+动量和动量定理
- 保健酒业市场前沿趋势深度剖析
- 2025-2030家电制造企业渠道调整销售模式核心技术发展趋势研究报告
- 2025-2030家用医疗器械智能制造体系现有基础及维度研究未来潜力进行深度发展探索计划书
- 2025-2030家居软装行业市场供需分析及投资评估规划分析研究报告
- 地方中考试题及详细讲解
- Unit8SectionApronunciation~e课件人教版英语八年级上册
- 洗衣行业标准操作流程及质量管理
- 《鲁滨孙漂流记》内容解析与测试题
- 餐饮业员工职业安全健康管理办法
- 【初中 历史】2025-2026学年统编版八年级历史上册期末材料分析题练习
- 广东省深圳市福田区五校2024-2025学年九年级上学期期末(一模)化学试题(含答案)
- 承包商安全考核实施细则
- 2026年湖南财经工业职业技术学院单招职业技能测试题库及答案详解1套
- 西南名校联盟2026届“3+3+3”高考备考诊断性联考(一)英语试卷
- 干旱灾害课件
- PCOS卵泡微环境的干细胞重塑策略
- 《马原》期末复习资料
- 保乳术后放疗剂量分割方案优化
- 雨课堂学堂在线学堂云高等药理学 中国药科单元测试考核答案
- 2026-2031中国户外用品行业现状分析及前景预测报告
评论
0/150
提交评论