机器人运动学和动力学_第1页
机器人运动学和动力学_第2页
机器人运动学和动力学_第3页
机器人运动学和动力学_第4页
机器人运动学和动力学_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机器人运动学和动力学难点讲解课前讨论什么是运动学?什么是动力学?运动学和动力学两者之间的区别是什么?答案要点答案要点运动学,从几何的角度(指不涉及物体本身的物理性质和加在物体上的力)描述和研究物体位置随时间的变化规律的力学分支。以研究质点和刚体这两个简化模型的运动为基础,并进一步研究变形体(弹性体、流体等)的运动。

动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。区别:

动力学,即既涉及运动又涉及受力情况的,或者说跟物体质量有关系的问题。常与牛顿第二定律或动能定理、动量定理等式子中含有m的学问。含有m说明要研究物体之间的的相互作用(就是力)。

运动学,跟质量与受力无关,只研究速度、加速度、位移、位置、角速度等参量的常以质点为模型的题。只有一个物体的话研究它的质量没有什么意义,因为质量就是它的惯性大小,或被力影响的强弱,而力必须是两个物体之间的。机器人运动学工业机器人运动学涉及到机器人手臂(机械手)相对于固定参考坐标系原点几何关系的分析研究,特别机器人手臂末端执行器位置和姿态与关节空间变量之间的关系。这里讨论机器人运动学的两个具有理论和实际意义的基本问题:机器人运动学(1)运动学方程的正解正问题:已知关节变量qi的值,求手在空间的位姿T。正解特征:唯一性。用处:检验、校准机器人。(2)运动学方程的逆解逆问题:已知手在空间的位姿T,求关节变量qi的值。逆解特征分三种情况:多解、唯一解、无解。多解的选择原则:最近原则。计算方法:逆递推法运动学方程的模型:

T=f(qi),i=1,…,nT——机器人手在空间的位姿

qi——机器人各个关节变量建立并求解运动学方程杆件坐标系的建立坐标系号的分配方法机器人的各连杆通过关节连接在一起,关节有移动副与转动副两种。按从机座到末端执行器的顺序,由低到高依次为各关节和各连杆编号,如图1.15所示。机座的编号为杆件0,与机座相连的连杆编号为杆件1,依此类推。机座与连杆1的关节编号为关节1,连杆1与连杆2的连接关节编号为2,依此类推。各连杆的坐标系Z轴方向与关节轴线重合(对于移动关节,Z轴线沿此关节移动方向)。杆件坐标系的建立末端执行器上的坐标系依据夹持器(手爪)手指的运动方向固定在末端执行器上。原点位于形心;Xn沿末端执行器手指组成的平面的法向,故又被称为法线矢量;Yn垂直于手指,称为姿态矢量。Zn的方向朝外指向目标,称为接近矢量。

建立并求解运动学方程1、运动学方程建立步骤

(1)建立坐标系

(2)确定参数

(3)相邻杆件的位姿矩阵

(4)建立方程1、运动学方程建立步骤(1)建立坐标系①机座坐标系{0}②杆件坐标系{i}i=1,2,…,n③手部坐标系{h}建立并求解运动学方程1、运动学方程建立步骤(1)建立坐标系①机座坐标系{0}

建立原则:z0轴垂直,x0轴水平,x0方向指向手部所在平面。x0z0o0建立并求解运动学方程建立并求解运动学方程1、运动学方程建立步骤(1)建立坐标系②杆件坐标系{i},i=1,2,…,n建立坐标系的总原则:是使杆件的单步坐标变换简单建立三维运动坐标系的三原则:建立并求解运动学方程第一原则:一轴与关节轴线重合,第二原则:另一轴与两关节轴线的距离重合,第三原则:二者必有一轴沿杆件指向。杆件坐标系有两种:

第一种:{i}坐标系建立在第i+1关节上;

第二种:{i}坐标系建立在第i关节上。(1)建立坐标系转动关节的D-H坐标系建立如图1.16所示。连杆i的坐标系的Zi轴:沿着i + 1的转动关节轴线;Xi轴:沿着Zi–1和Zi的公垂线,指向离开Zi–1轴的方向;坐标系的Yi轴由Xi和Zi确定。至此,连杆i的坐标系确立。建立并求解运动学方程1、运动学方程建立步骤(1)建立坐标系②杆件坐标系{i}

第一种坐标系:

{i}坐标系建立在第i+1关节上。x0z0o00123关节1关节2关节3z2x2o2x1y1o1z3x3o3x0z0o00123关节1关节2关节3x2y2o2z3x3o3x1z1o1建立并求解运动学方程1、运动学方程建立步骤(1)建立坐标系②杆件坐标系{i}

第二种坐标系:

{i}坐标系建立在第i关节上。建立并求解运动学方程1、运动学方程建立步骤(1)建立坐标系③手部坐标系{h}

在第一种杆件坐标系下,{h}与{n}坐标系重合。x0z0o00123关节1关节2关节3z2x2o2x1y1o1Z3hx3ho3h1、运动学方程建立步骤(1)建立坐标系③手部坐标系{h}

在第二种杆件坐标系下,{h}与{n}坐标系的方向保持一致。ohx0z0o00123关节1关节2关节3x2y2o2z3x3o3x1z1o1Zhxh建立并求解运动学方程1、运动学方程建立步骤(2)确定参数①杆件几何参数(不变)

I、杆件长度ai:两关节轴线的距离。

II、杆件扭角αi:两关节轴线的夹角。iaiαi建立并求解运动学方程建立并求解运动学方程1、运动学方程建立步骤(2)确定参数②关节运动参数

I、关节平移量di:

II、关节回转量θi:关节变量:di——平移关节;θi——回转关节。建立并求解运动学方程1、运动学方程建立步骤(3)相邻杆件位姿矩阵(4)建立方程用表示机器人连杆n坐标系的坐标变换成连杆n–1坐标系的坐标的齐次坐标变换矩阵,通常把上标省略,写成An。对于n个关节的机器人,前一个关节向后一个关节的坐标齐次变换矩阵分别为也就是其中,A1表示杆件1上的1号坐标系到机座的0号坐标系的齐次坐标变换矩阵。建立并求解运动学方程在机器人的基座上,可以从第一个关节开始变换到第二个关节,然后到第三个……,再到机器人的手,最终到末端执行器。若把每个变换定义为,则可以得到许多表示变换的矩阵。在机器人的基座与手之间的总变换则为:

其中n是关节数。对于一个具有六个自由度的机器人而言,有6个A矩阵。

建立并求解运动学方程1、运动学方程建立步骤例:已知三自由度平面关节机器人如图所示,设机器人杆件1、2、3的长度为l1,l2,l3。建立机器人的运动学方程。

l1l3l2建立并求解运动学方程1、运动学方程建立步骤解:(1)建立坐标系(第一种)a、机座坐标系{0}

b、杆件坐标系{i}

c、手部坐标系{h}(与末端杆件坐标系{n}重合)

l1l3l2x0y0y1x1y2x2y3hx3h

建立并求解运动学方程1、运动学方程建立步骤解:(2)确定参数l1l3l2x0y0y1x1y2x2y3hx3hi

diθi

liαi

qi1

0θ1l1

0θ12

0θ2l2

0θ23

0θ3l3

0θ3θ3θ2θ1

建立并求解运动学方程1、运动学方程建立步骤解:(3)相邻杆件位姿矩阵l1l3l2x0y0y1x1y2x2y3hx3hθ3θ2θ1建立并求解运动学方程1、运动学方程建立步骤解:(3)相邻杆件位姿矩阵l1l3l2x0y0y1x1y2x2y3hx3hθ3θ2θ1建立并求解运动学方程1、运动学方程建立步骤解:(3)相邻杆件位姿矩阵l1l3l2x0y0y1x1y2x2y3hx3hθ3θ2θ1建立并求解运动学方程1、运动学方程建立步骤解:(4)建立方程将相邻杆件位姿矩阵依次相乘,则有:

建立并求解运动学方程1、运动学方程建立步骤解:(4)建立方程若用矩阵形式表示,则为:

建立并求解运动学方程1、运动学方程建立步骤解:(4)建立方程若用方程组形式表示,则为:

建立并求解运动学方程1、运动学方程建立步骤解:(1)建立坐标系(第二种)a、机座坐标系{0}

b、杆件坐标系{i}

c、手部坐标系{h}(与末端杆件坐标系{n}方向一致)

l1l3l2x0y0y1x1y2x2y3x3yhxh建立并求解运动学方程1、运动学方程建立步骤解:(2)确定参数iai-1αi-1

diθi

qi1

0

0

0θ1θ12l1

0

0θ2θ23l2

0

0θ3θ3l1l3l2x0y0y1x1y2x2y3x3yhxhθ3θ2θ1建立并求解运动学方程1、运动学方程建立步骤解:(3)相邻杆件位姿矩阵l1l3l2x0y0y1x1y2x2y3x3yhxhθ3θ2θ1建立并求解运动学方程1、运动学方程建立步骤解:(3)相邻杆件位姿矩阵l1l3l2x0y0y1x1y2x2y3x3yhxhθ3θ2θ1建立并求解运动学方程1、运动学方程建立步骤解:(3)相邻杆件位姿矩阵l1l3l2x0y0y1x1y2x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论