2023年高考数学一轮复习高考大题专项练4高考中的立体几何_第1页
2023年高考数学一轮复习高考大题专项练4高考中的立体几何_第2页
2023年高考数学一轮复习高考大题专项练4高考中的立体几何_第3页
2023年高考数学一轮复习高考大题专项练4高考中的立体几何_第4页
2023年高考数学一轮复习高考大题专项练4高考中的立体几何_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考大题专项练四高考中的立体几何1.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求点A到平面PBC的距离2.如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.(1)求证:PC⊥AD;(2)证明在PB上存在一点Q,使得A,Q,M,D四点共面;(3)求点D到平面PAM的距离.3.如下图,△ABC为正三角形,CE⊥平面ABC,BD∥CE,CE=CA=2BD,M是EA的中点.求证:(1)DE=DA.(2)平面BDM⊥平面ECA.4.如图,在底面是菱形的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AC=2,A1B=A1D=22,点E在A1D上(1)证明:AA1⊥平面ABCD;(2)当A1EED为何值时,A1B∥平面EAC,并求出此时三棱锥5.(2023山东,文18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如下图.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.6.如图,正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.7.(2023天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.参考答案高考大题专项练四高考中的立体几何1.(1)证明设BD与AC的交点为O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)解V=16PA·AB·AD=36AB,由V=34,可得作AH⊥PB交PB于H,由题设知BC⊥平面PAB,所以BC⊥AH.故AH⊥平面PBC.又AH=PA·所以点A到平面PBC的距离为3132.(1)证法一取AD中点O,连接OP,OC,AC,依题意可知△PAD,△ACD均为正三角形,所以OC⊥AD,OP⊥AD.又OC∩OP=O,OC⊂平面POC,OP⊂平面POC,所以AD⊥平面POC.又PC⊂平面POC,所以PC⊥AD.证法二连接AC,依题意可知△PAD,△ACD均为正三角形,又M为PC的中点,所以AM⊥PC,DM⊥PC.又AM∩DM=M,AM⊂平面AMD,DM⊂平面AMD,所以PC⊥平面AMD.又AD⊂平面AMD,所以PC⊥AD.(2)证明当点Q为棱PB的中点时,A,Q,M,D四点共面,证明如下:取棱PB的中点Q,连接QM,QA,又M为PC的中点,所以QM∥BC,在菱形ABCD中AD∥BC,所以QM∥AD,所以A,Q,M,D四点共面.(3)解点D到平面PAM的距离即点D到平面PAC的距离,由(1)可知PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,即PO为三棱锥P-ACD的体高.在Rt△POC中,PO=OC=3,PC=6,在△PAC中,PA=AC=2,PC=6,边PC上的高AM=PA2-PM2=102,所以△PAC的面积S△PAC=12PC·AM=12×6×102=152,设点D到平面PAC的距离为h,由VD-PAC=VP-ACD,得13S△PAC·h=13S△ACD·PO,又S△ACD3.证明(1)取CE的中点F,连接DF.∵CE⊥平面ABC,∴CE⊥BC.∵BD∥CE,BD=12CE=CF=FE∴四边形FCBD是矩形,∴DF⊥EC.又BA=BC=DF,∴Rt△DEF≌Rt△ADB,∴DE=DA.(2)取AC中点N,连接MN,NB,∵M是EA的中点,∴MN12由BD12CE,且BD⊥平面ABC,可得四边形MNBD是矩形,于是DM⊥∵DE=DA,M是EA的中点,∴DM⊥EA.又EA∩MN=M,∴DM⊥平面ECA,而DM⊂平面BDM,∴平面BDM⊥平面ECA.4.(1)证明因为底面ABCD是菱形,∠ABC=60°,所以AB=AD=AC=2.在△AA1B中,由AA12+AB2=A1B2,知AA1同理,AA1⊥AD.又因为AB∩AD于点A,所以AA1⊥平面ABCD.(2)解当A1EED=1时,A1B证明如下:连接BD交AC于O,当A1EED=1,即点E为A1D的中点时,连接OE,那么OE∥A1B,所以A1B设AD的中点为F,连接EF.那么EF∥AA1,所以EF⊥平面ACD,且EF=1,可求得S△ACD=3.所以VE-ACD=13×1×3=33,即VD-AEC=V5.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1又O1C⊂平面B1CD1,A1O⊄平面B1CD1所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.6.(1)证明因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.所以AB⊥平面PED,故AB⊥PG.又由可得,PA=PB,从而G是AB的中点.(2)解在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC.因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=23PG,DE=1由,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=22.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=13×12×2×2×7.(1)解如图,由AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由,得AP=AD故cos∠DAP=ADAP所以,异面直线AP与BC所成角的余弦值为55(2)证明因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC.又PD⊥PB,所以PD⊥平面PBC.(3)解过点D作AB的平行线交BC于点F,连接PF,那么DF与平面PBC所成的角等于AB与平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论