版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若,则a的取值范围为()A. B. C. D.2.己知四棱锥中,四边形为等腰梯形,,,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为()A. B.C. D.3.若,,,则()A. B.C. D.4.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.5.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.37.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或98.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.9.已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为()A. B.3 C. D.10.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.11.若复数满足(是虚数单位),则的虚部为()A. B. C. D.12.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.14.直线(,)过圆:的圆心,则的最小值是______.15.已知均为非负实数,且,则的取值范围为______.16.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.证明:;设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.18.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.19.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.20.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积.21.(12分)等差数列的前项和为,已知,.(Ⅰ)求数列的通项公式及前项和为;(Ⅱ)设为数列的前项的和,求证:.22.(10分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.2、A【解析】
根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.3、C【解析】
利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.4、A【解析】
本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.5、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.6、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;7、C【解析】
由题意利用两个向量的数量积的定义和公式,求的值.【详解】解:由题意可得,求得,或,故选:C.【点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题.8、D【解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.9、B【解析】
根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.10、D【解析】
利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.11、A【解析】
由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.12、B【解析】
根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.【点睛】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.14、;【解析】
求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值.【详解】圆:的标准方程为,圆心为,由题意,即,∴,当且仅当,即时等号成立,故答案为:.【点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”.15、【解析】
设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则,因为,当且仅当时等号成立,所以,,即,令则函数的对称轴为,所以当时函数有最大值为,即.当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:【点睛】本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.16、【解析】
根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.【详解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②①②联解,得,可得,∴双曲线的,结合,得离心率.故答案为:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)由平面平面的性质定理得平面,.在中,由勾股定理得,平面,即可得;(2)以为坐标原点建立空间直角坐标系,由空间向量法和异面直线与所成角的余弦值为,得点M的坐标,从而求出二面角的余弦值.【详解】(1)平面平面,平面平面=,,所以.由面面垂直的性质定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以为坐标原点建立如图所示的空间直角坐标系,则,,,设,则,,得,,而,设平面的法向量为,由可得:,令,则,取平面的法向量,则,故二面角的余弦值为.【点睛】本题考查了线线垂直的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养和向量法的合理运用,属于中档题.18、(1)详见解析;(2)详见解析.【解析】
(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.19、(1)(2)【解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.20、(1);(2).【解析】
(1)整理得:,再由余弦定理可得,问题得解.(2)由正弦定理得:,,,再代入即可得解.【详解】(1)由题意,得,∴;(2)由正弦定理,得,,∴.【点睛】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题.21、(Ⅰ),(Ⅱ)见解析【解析】
(Ⅰ)根据等差数列公式直接计算得到答案.(Ⅱ),根据裂项求和法计算得到得到证明.【详解】(Ⅰ)等差数列的公差为,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【点睛】本题考查了等差数列的基本量的计算,裂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同审查及风险控制管理工具
- 企业安全生产标准化检查表及整改流程
- 产品研发与优化标准模板
- 企业安全生产检查表与整改措施模板
- 财务管理成本分析计算工具
- 2025年低空经济数据治理与隐私保护标准体系构建国际合作报告
- 购柴火间合同
- 重男轻女试题分析及答案
- 2025年脑瘫儿童培训试卷及答案
- 三原租房合同
- GB/T 10045-2018非合金钢及细晶粒钢药芯焊丝
- FZ/T 13001-2013色织牛仔布
- 2022-2023学年广西贵港市港北区九年级(上)期中数学试题及答案解析
- 西方音乐史全套完整教学课件
- 数轴上的动点问题课件
- 动火作业备案表(一式两联)
- 制备液相色谱技术(LCMS)课件
- 广西壮族自治区工程造价综合定额答疑汇编2022年11月更新
- 感染性与非感染性骨关节炎课件
- 中学消防安全管理制度汇编
- DB4401-T 3-2018城市综合管廊工程施工及验收规范-(高清现行)
评论
0/150
提交评论