版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A. B.2 C.2 D.42.下列二次根式能与合并的是()A. B. C. D.3.下列等式一定成立的是()A.9-4=5 B.54.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确的是()A. B.C. D.5.已知点P(3,4)在函数y=mx+1的图象上,则m=()A.-1 B.0 C.1 D.26.如图,在中,对角线与交于点,添加下列条件不能判定为矩形的只有()A. B.,,C. D.7.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.8.如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC的长度是()A.8cm B.4cm C.3cm D.6cm9.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为()A. B.1.5 C. D.210.下列二次根式中能与2合并的是()A. B. C. D.11.如图,点A,B分别在函数y=(k1>0)与函数y=(k2<0)的图象上,线段AB的中点M在x轴上,△AOB的面积为4,则k1﹣k2的值为()A.2 B.4 C.6 D.812.如图,在平面直角坐标系中,已知点A(1,3),B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A.1.4 B.1.5 C.1.6 D.1.7二、填空题(每题4分,共24分)13.若二次根式有意义,则x的取值范围为__________.14.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B=__________.15.最简二次根式与是同类二次根式,则=________.16.______.17.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________18.计算的结果是.三、解答题(共78分)19.(8分)解方程:x2-3x=5x-120.(8分)(1)计算:(1)化简求值:,其中x=1.21.(8分)某中学计划购进甲、乙两种学具,已知一件甲种学具的进价与一件乙种学具的进价的和为40元,用90元购进甲种学具的件数与用150元购进乙种学具的件数相同.求每件甲种、乙种学具的进价分别是多少元?该学校计划购进甲、乙两种学县共100件,此次进货的总资金不超过2000元,求最少购进甲种玩具多少?22.(10分)如图,抛物线与轴交于,两点在的左侧),与轴交于点.(1)求点,点的坐标;(2)求的面积;(3)为第二象限抛物线上的一个动点,求面积的最大值.23.(10分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?24.(10分)某县为发展教育事业,加强对教育经费投入,2012年投入3000万元,2014年投入3630万元,(1)求该县教育经费的年平均增长率;(2)若增长率保持不变,预计2015年该县教育经费是多少.25.(12分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.26.如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B(9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【解析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.【详解】解:∵四边形ABCD是平行四边形,
∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==1.
故选B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.2、B【解析】分析:先化成最简二次根式,再根据同类二次根式的定义判断即可.详解:A、,和不能合并,故本选项错误;
B、,和能合并,故本选项正确;C、,和不能合并,故本选项错误;D、,和不能合并,故本选项错误;故选B.点睛:本题考查了同类二次根式的应用,注意:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式.
3、B【解析】A.9-4=3-2=1,则原计算错误;B.5×3=15,正确;C.94、B【解析】
直接根据题意得出第三季度投放单车的数量为:(1+x)2=1+0.1,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x,根据题意可得:(1+x)2=1.1.故选:B.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5、C【解析】
把点P(3,4)代入函数y=mx+1,求出m的值即可.【详解】点P(3,4)代入函数y=mx+1得,4=3m+1,解得m=1.故选:C.【点睛】本题考查的是一次函数图象上点的坐标特点,比较简单.熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.6、C【解析】
根据矩形的判定即可求解.【详解】A.,对角线相等,可以判定为矩形B.,,,可知△ABC为直角三角形,故∠ABC=90°,故可以判定为矩形C.,对角线垂直,不能判定为矩形D.,可得AO=BO,故AC=BD,可以判定为矩形故选C.【点睛】此题主要考查矩形的判定,解题的关键是熟知矩形的判定定理.7、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误,故选C.【点睛】本此题考查了轴对称及中心对称图形的判断,解答本题的关键是掌握中心对称图形与轴对称图形的概念.8、A【解析】
首先根据菱形的性质可得BO=DO,AC⊥DB,AO=CO,然后再根据勾股定理计算出AO长,进而得到答案.【详解】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=2AO=8cm.故选:A.【点睛】本题考查菱形的性质,要注意菱形的对角线互相垂直,有直角即可用勾股定理求某些边的长.9、A【解析】
由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.【详解】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,∵由勾股定理得:BE=,∴BC=BE=,故选:A.【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.10、B【解析】
先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【详解】A、=2,不能与2合并,故该选项错误;B、能与2合并,故该选项正确;C、=3不能与2合并,故该选项错误;D、=3不能与2合并,错误;故选B.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.11、D【解析】
过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D,然后根据平行与中点得出OC=OD,设点A(a,d),点B(b,﹣d),代入到反比例函数中有k1=ad,k2=﹣bd,然后利用△AOB的面积为4得出ad+bd=8,即可求出k1﹣k2的值.【详解】过点A作AC⊥y轴交于C,过点B作BD⊥y轴交于D∴AC∥BD∥x轴∵M是AB的中点∴OC=OD设点A(a,d),点B(b,﹣d)代入得:k1=ad,k2=﹣bd∵S△AOB=4∴整理得ad+bd=8∴k1﹣k2=8故选:D.【点睛】本题主要考查反比例函数与几何综合,能够根据△AOB的面积为4得出ad+bd=8是解题的关键.12、A【解析】
由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围即可判断.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.∵1.4<,∴n的值不可能是1.4.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.二、填空题(每题4分,共24分)13、x≤1【解析】
解:∵二次根式有意义,∴1-x≥0,∴x≤1.故答案为:x≤1.14、77°【解析】
先根据旋转的性质得∠B=∠AB′C′,AC=AC′,∠CAC′=90°,则可判断△ACC′为等腰直角三角形,所以∠ACC′=∠AC′C=45°,然后根据三角形外角性质计算出∠AB′C′,从而得到∠B的度数.【详解】∵△ABC绕点A顺时针旋转90°后得到的△AB′C′,∴∠B=∠AB′C′,AC=AC′,∠CAC′=90°,∴△ACC′为等腰直角三角形,∴∠ACC′=∠AC′C=45°,∴∠AB′C′=∠B′CC′+∠CC′B′=45°+32°=77°,∴∠B=77°.故答案为77°.【点睛】此题考查旋转的性质,解题关键在于利用三角形外角性质.15、21【解析】
根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴,解得,,∴故答案为21.16、【解析】
先逐项化简,再进一步计算即可.【详解】原式=-1-3+1=.故答案为:.【点睛】本题考查了实数的混合运算,正确化简各数是解答本题的关键.17、【解析】
解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,18、1.【解析】
.故答案为1.三、解答题(共78分)19、x=4±【解析】
根据一元二次方程的解法即可求出答案.【详解】解:∵x2-3x=5x-1,∴x2-8x=-1∴x2-8x+16=15,∴(x-4)2=15,∴x=4±;【点睛】此题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题是属于基础题型.20、(1)3;(1),.【解析】
(1)根据实数的运算法则,先算乘方和开方,再算加减,注意0指数幂和负指数幂的运算;(1)根据分式的乘除法则先化简,再代入已知值计算.【详解】解:(1)原式=﹣1+4+﹣+1﹣1=3;(1)原式=•==﹣,当x=1时,原式=.【点睛】本题考核知识点:实数运算,分式化简求值.解题关键点:掌握实数运算法则和分式的运算法则,要注意符号问题.21、(1)甲,乙两种学具分别是15元件,25元件;(2)甲种学具最少购进50个.【解析】
.(1)设甲种学具进价x元/件,则乙种学具进价为(40-x)元/件,根据一件甲种学具的进价与一件乙种学具的进价的和为40元,用90元购进甲种学具的件数与用150元购进乙种学具的件数相同可列方程求解.(2)设购进甲种学具y件,则购进乙种学具(100-y)件,根据学校决定此次进货的总资金不超过2000元,可列出不等式求解;【详解】设甲种学具进价x元件,则乙种学具进价为元件,可得:解得:,经检验是原方程的解.故.答:甲,乙两种学具分别是15元件,25元件;设购进甲种学具y件,则购进乙种学具件,解得:.答:甲种学具最少购进50个;【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,列不等式解方案设计问题的运用,正确不等关系是解题关键.22、(1),;(2);(3)当时,最大面积4.【解析】
(1)在抛物线的解析式中,设可以求出A、B点的坐标(2)令,求出顶点C的坐标,进而能得出AB,CO的长度,直接利用两直角边求面积即可(3)作交于,设解析式把A,C代入求出解析式,设则,把值代入求三角形的面积,即可解答【详解】(1)设,则,,(2)令,可得,(3)如图:作交于设解析式解得:解析式设则当时,最大面积4【点睛】此题考查二次函数综合题,解题关键在于做辅助线23、20%【解析】
设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.【详解】解:设平均每次降价率为x,依题意得:,
解得:,(不合题意舍去),
答:平均每次的降价率为20%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.24、(1)10%;(2)3993万元.【解析】
(1)设平均增长率为x,因为2012年投入3000万元,所以2013年投入3000(1+x)万元,2014年投入万元,然后可得方程,解方程即可;(2)根据(1)中x的值代入3630(1+x)计算即可.【详解】解:(1)设平均增长率为x,根据题意得,,,,所以(舍去),(2)3630(1+10%)=3993(万元)答:年平均增长率为10%,预计2015年教育经费投入为3993万元.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都文昌村拆迁协议书
- 戴姆勒签约奥迪协议书
- 改性塑料体育用品材料创新创业项目商业计划书
- (副高级)高级卫生专业技术资格考试试题及答案
- 【高中语文】《燕歌行》教学设计+统编版高二语文选择性必修中册
- 汕头“书香城市”建设:24 小时书店全覆盖与市民阅读习惯培育纪实 -2026 届高三语文主题读写素材 11 月热点时事写作素材
- 2024年岳阳市消防救援支队政府专职消防员招录真题
- 超静定结构力学特性研究
- 2024年上海交通大学医学院附属新华医院招聘真题
- 人教版(2024)八年级上册英语Unit 6 Plan for Yourself 单元达标测试卷(含答案)
- 勾股定理(章节复习)(知识梳理+32个考点+难度分层练 共74题)解析版-2024八年级数学上册(北师大版)
- 2025年农林经济管理考研农业政策测试试卷(含答案)
- 农村规模化供水工程实施方案
- 2025贵州毕节市中级人民法院招聘聘用制法官助理30人考试模拟试题及答案解析
- 2025年-【1-6】真题2000道奥数题库-参考答案-新版
- 电气维护试题及答案
- 2025年轨道交通设备维护可行性研究报告
- 2025四川南充市嘉陵城市发展集团有限公司招聘工作人员10人考试模拟试题及答案解析
- 税务风险知识培训课件
- 2025-2030长租公寓资产证券化路径与实操案例解析
- 2025年初级注册安全工程师(安全生产法律法规)题库及答案(广东省)
评论
0/150
提交评论