2023年四川省遂宁市射洪县数学高一下期末教学质量检测模拟试题含解析_第1页
2023年四川省遂宁市射洪县数学高一下期末教学质量检测模拟试题含解析_第2页
2023年四川省遂宁市射洪县数学高一下期末教学质量检测模拟试题含解析_第3页
2023年四川省遂宁市射洪县数学高一下期末教学质量检测模拟试题含解析_第4页
2023年四川省遂宁市射洪县数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象()A.关于点(-,0)对称 B.关于原点对称 C.关于y轴对称 D.关于直线x=对称2.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.3.已知函数f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,164.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为()A.3 B.5 C.2 D.15.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元6.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.7.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.8.已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A. B. C. D.9.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值10.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)二、填空题:本大题共6小题,每小题5分,共30分。11.如图,某人在高出海平面方米的山上P处,测得海平面上航标A在正东方向,俯角为,航标B在南偏东,俯角,且两个航标间的距离为200米,则__________米.12.已知,则______.13.数列满足,则的前60项和为_____.14.已知,且,.则的值是________.15.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________16.已知数列是等差数列,记数列的前项和为,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知锐角三个内角、、的对边分别是,且.(1)求A的大小;(2)若,求的面积.18.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c19.已知等比数列的前n项和为,且,.(1)求数列的通项公式;(2)记,求的前n项和.20.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.21.某校从高一(1)班和(2)班的某次数学考试的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示(试卷满分为100分)(1)试计算这12份成绩的中位数;(2)用各班的样本方差比较两个班的数学学习水平,哪个班更稳定一些?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

关于点(-,0)对称,选A.2、C【解析】

根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.3、B【解析】

由题得ωπ-π3<ωx-【详解】因为π<x≤2π,ω>0,所以ωπ-π因为fx在区间(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因为k+1所以-4因为k∈Z,所以k=-1或k=0.当k=-1时,0<ω<16;当k=0时,故选:B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.4、A【解析】

先由题意确定抽样比,进而可求出结果.【详解】由题意该单位共有职工人,用分层抽样的方法从中抽取10人进行体检,抽样比为,所以应抽查的老年人的人数为.故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型.5、B【解析】

试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程6、C【解析】

直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.7、B【解析】

先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、C【解析】

分别求出设关于直线对称的点,关于对称的点,当共线时,的周长取得最小值,为,利用两点间的距离公式,求出答案.【详解】过两点的直线方程为设关于直线对称的点,则,解得即,同理可求关于对称的点,当共线时的周长取得最小值为.故选C.【点睛】本题主要考查了点关于直线的对称性的简单应用,试题的技巧性较强,属于中档题.9、C【解析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.10、C【解析】

根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【点睛】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据题意利用方向坐标,根据三角形边角关系,利用余弦定理列方程求出的值.【详解】航标在正东方向,俯角为,由题意得,.航标在南偏东,俯角为,则有,.所以,;由余弦定理知,即,可求得(米.故答案为:1.【点睛】本题考查方向坐标以及三角形边角关系的应用问题,考查余弦定理应用问题,是中档题.12、【解析】

利用同角三角函数的基本关系将弦化切,再代入计算可得.【详解】解:,故答案为:【点睛】本题考查同角三角函数的基本关系,齐次式的计算,属于基础题.13、1830【解析】

由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.14、2【解析】

.15、2【解析】

根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.16、1【解析】

由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据正弦定理把边化为对角的正弦求解;(2)根据余弦定理和已知求出,再根据面积公式求解.【详解】解:(1)由正弦定理得∵,∴,又∵∴(2)由余弦定理得所以即∴∴的面积为【点睛】本题考查解三角形.常用方法有正弦定理,余弦定理,三角形面积公式;注意增根的排除.18、(1)(8,62);(2)【解析】

(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【详解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有两解,∴bsin解得8<b<62,即b的取值范围为((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.19、(1)(2)【解析】

(1)直接利用等比数列公式计算得到答案.(2),,利用错位相减法计算得到答案.【详解】(1)设等比数列的首项为,公比为,显然.,.两式联立得:,,.(2),所以.则,①,②,①-②得:.所以.【点睛】本题考查了等比数列通项公式,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(1)(2);(3).【解析】

(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1)80;(2)(1)班.【解析】

(1)从茎叶图可直接得到答案;(2)通过方差公式计算出两个半的方差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论