版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.2.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则3.下列函数中是偶函数且最小正周期为的是()A. B.C. D.4.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了座城市作实验基地,这座城市共享单车的使用量(单位:人次/天)分别为,,…,,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A.,,…,的标准差 B.,,…,的平均数C.,,…,的最大值 D.,,…,的中位数5.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.6.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.7.已知,若,则等于()A. B.1 C.2 D.8.函数的定义域是().A. B. C. D.9.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.110.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和为,若,则______.12.已知向量,且,则的值为______13.函数,的反函数为__________.14.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.15.在等比数列中,,,则________.16.已知,,若,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.18.如图,在平面四边形中,.(Ⅰ)求;(Ⅱ)若,求.19.已知等比数列的公比,前项和为,且满足.,,分别是一个等差数列的第1项,第2项,第5项.(1)求数列的通项公式;(2)设,求数列的前项和;(3)若,的前项和为,且对任意的满足,求实数的取值范围.20.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.21.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.2、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.3、A【解析】
本题首先可将四个选项都转化为的形式,然后对四个选项的奇偶性以及周期性依次进行判断,即可得出结果.【详解】中,函数,是偶函数,周期为;中,函数是奇函数,周期;中,函数,是非奇非偶函数,周期;中,函数是偶函数,周期.综上所述,故选A.【点睛】本题考查对三角函数的奇偶性以及周期性的判断,考查三角恒等变换,偶函数满足,对于函数,其最小正周期为,考查化归与转化思想,是中档题.4、A【解析】
利用方差或标准差表示一组数据的稳定程度可得出选项.【详解】表示一组数据的稳定程度是方差或标准差,标准差越小,数据越稳定故选:A【点睛】本题考查了用样本估计总体,需掌握住数据的稳定程度是用方差或标准差估计的,属于基础题.5、A【解析】
根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.6、D【解析】
本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.7、A【解析】
首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.8、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.9、A【解析】
根据投影的定义和向量的数量积求解即可.【详解】解:∵,,∴向量在向量方向上的投影,故选:A.【点睛】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.10、D【解析】由正弦定理得A+C=180°-60°=120°,
由题意得:A有两个值,且这两个值之和为180°,
∴利用正弦函数的图象可得:60°<A<120°,
若A=90,这样补角也是90°,一解,不合题意,<sinA<1,
∵x=sinA,则2<x<故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用和的关系计算得到答案.【详解】当时,满足通项公式故答案为【点睛】本题考查了和的关系,忽略的情况是容易发生的错误.12、-7【解析】
,利用列方程求解即可.【详解】,且,,解得:.【点睛】考查向量加法、数量积的坐标运算.13、【解析】
将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.14、(4,5)4.【解析】
根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.15、【解析】
根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.16、【解析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析。(2)【解析】
(1)首先根据已知得到,再根据线面平行的判定即可得到平面.(2)首先根据线面垂直的判定证明平面,即可找到为与平面所成角,在计算其正弦值即可.【详解】(1)因为分别是,的中点,所以四边形为平行四边形,即.平面,所以平面.(2)因为,为中点,所以.平面.所以为与平面所成角.在中,,,所以,.在中,,,所以.【点睛】本题第一问考查线面平行的判定,本题第二问考查线面成角,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在中利用余弦定理即可求得结果;(Ⅱ)在中利用正弦定理构造方程即可求得结果.【详解】(Ⅰ)在中,由余弦定理可得:(Ⅱ),在中,由正弦定理可得:,即:解得:【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,考查公式的简单应用,属于基础题.19、(1).(2);(3)【解析】
(1)利用等比数列通项公式以及求和公式化简,得到,由,,分别是一个等差数列的第1项,第2项,第5项,利用等差数列的定义可得,化简即可求出,从而得到数列的通项公式.(2)由(1)可得,利用错位相减,求出数列的前项和即可;(3)结合(1)可得,利用裂项相消法,即可得到的前项和,求出的最大值,即可解得实数的取值范围【详解】(1)由得,所以,由,,分别是一个等差数列的第1项,第2项,第5项,得,即,即,即,因为,所以,所以.(2)由于,所以,所以,,两式相减得,,所以(3)由知,∴,∴,解得或.即实数的取值范围是【点睛】本题考查等比数列通项公式与前项和,等差数列的定义,以及利用错位相减法和裂项相消法求数列的前项和,考查学生的计算能力,有一定综合性.20、(1);(2)【解析】
(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.21、(Ⅰ)0.4;(Ⅱ)20.【解析】
(1)首先可以根据频率分布直方图得出样本中分数不小于的频率,然后算出样本中分数小于的频率,最后计算出分数小于的概率;(2)首先计算出样本中分数不小于的频率,然后计算出分数在区间内的人数,最后计算出总体中分数在区间内的人数。【详解】(1)根据频率分布直方图可知,样本中分数不小于的频率为,所以样本中分数小于的频率为.所以从总体的名学生中随机抽取一人,其分数小于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗健康叙事的未来趋势
- 医疗不良事件RCA报告的撰写误区与规避
- 动态补偿在医疗设备人工智能辅助决策中的作用-洞察及研究
- 高原缺氧对神经保护因子表达的影响-洞察及研究
- 调和分析-洞察及研究
- 区块链在数字化运维模型中的创新应用-洞察及研究
- 大数据在遺迹评估中的应用-洞察及研究
- 磁性矿体资源利用效率优化研究-洞察及研究
- 译林版英语三年级下册 Unit1 School things (Lead in)
- 2025年浙江省乡村发展基金会公开招聘1人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 2025年统编版语文三年级上册第七、八单元模拟测试卷
- 车厢余煤清扫协议书
- 拆除油罐协议书
- 患者心理护理要点解析
- DB13∕T 6060-2025“一河(湖)一策”方案编制技术导则
- 中国自有品牌发展研究报告2025-2026
- 2025年中职计算机应用(计算机网络基础)试题及答案
- 装配式装修管线分离培训课件
- 2025四川绵阳市江油鸿飞投资(集团)有限公司招聘40人备考题库及答案详解(历年真题)
- 废物转运协议书范本
- 浙江省丽水发展共同体2025-2026学年高二上学期11月期中考试英语试卷
评论
0/150
提交评论