人教A版高中数学选修1-1《三章导数及其应用31变化率与导数312导数的概念》课教案24_第1页
人教A版高中数学选修1-1《三章导数及其应用31变化率与导数312导数的概念》课教案24_第2页
人教A版高中数学选修1-1《三章导数及其应用31变化率与导数312导数的概念》课教案24_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数的看法(一)教材解析本节课的授课内容选自人教社一般高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的看法》是第2课时.导数是微积分的中心看法之一,它是一种特其他极限,反响了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起重视要作用.导数看法是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是睁开科学研究必不可以少的工具.(二)授课目的1)在上一节学习平均变化率的基础上,认识瞬时速度、瞬时变化率的看法;2)理解导数的看法,知道瞬时变化率就是导数,领悟导数的思想及其内涵;3)会求函数在某点的导数及简单应用.(三)授课重点与难点重点:经过运动物体在某一时辰的瞬时速度的研究,抽象概括出函数导数的看法.难点:使学生领悟运动物体在某一时辰的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的看法.(四)授课过程1.复习引入(1)函数yf(x)从x1到x2的平均变化率公式;(2)函数yf(x)从x0到x0x的平均变化率公式.2.合作研究在高台跳水运动中,运动员在不同样时辰的速度是不同样的.我们把物体在某一时辰(某一地址)的速度称为瞬时速度.研究一:瞬时速度的求解从前面的学习我们知道,平均速度只能大概地描述某段时间内物体的运动状态,不用然能反响运动员在某一时辰的瞬时速度.怎样求运动员的瞬时速度呢?设计妄图:让学生产生进一步学习的需求,即有必要知道任意时辰的速度.以高台跳水运动为例,研究运动员在某一时辰的瞬时速度.在高台跳水运动中,若是运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在关系ht4.926.510.tt研究:怎样求运动员瞬时速度?比方t2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计妄图:问题详尽化,即求运动员在t2s时的瞬时速度.针对详尽的问题情境,追求解决问题的想法.我们求t2s的瞬时速度是多少,先察t2s周边平均速度的情况:t0时,在2t,2这段时间内t0时,在2,2t这段时间内h(2)h(2t)_____________v_______________________v(2t)2当t0.01时,v___________当t0.01时,v___________当t0.001时,v___________当t0.001时,v___________当t0.0001时,v___________当t0.0001时,v___________当

t

0.00001时,v

___________

t

0.00001时,v

___________当

t0.000001时,v___________当t0.000001时,v___________设计妄图:熟悉符号,让学生在亲自计算的过程中感觉逼近的趋势.合作研究:(1)当t趋近于0时,平均速度v有什么样的变化趋势?设计妄图:让学生经历观察、解析、概括、发现规律的过程,领悟瞬时速度的含义.2)我们怎样表示运动员在t2s时的瞬时速度?3)运动员在某一时辰t0的瞬时速度怎样表示?设计妄图:从特别到一般,即从特别点t2上升到任意点tt0瞬时速度的表示.(4)函数f(x)在xx0处的瞬时变化率怎样表示?设计妄图:舍弃详尽变化率问题的实质意义,抽象为数学问题,定义导数.研究二:导数的定义瞬时速度是平均速度h当t趋近于0时的极限.t导数的定义:函数yf(x)在xx0处的瞬时变化率是limyf(x0x)f(x0),我们称它为函数yf(x)在xx0处的导数,记作limxx0xx0limf(xx)f(x0).f(x0)或y|xx0即f(x0)x0x注意:函数应在点x0的周边有定义,否则导数不存在;瞬时变化率就是导数,导数就是在该点的函数增量与自变量增量的比值的极限,它反响的函数在点x0处变化的快慢程度;在定义导数的极限式中,x趋近于0,可正、可负,但不为0,而y可以为03.例题讲解种类一:导数的看法例1求函数f(x)x2在点x2处的导数解:因为yf(2x)f(2)(2x)2224x(x)2,所以y4x(x)24xxxy所以limlim(4x)4xx0x0练习1:求函数f(x)3x22x,求f(1)解:因为yf(1x)f(1)3(1x)22(1x)(32)4x3(x)2,所以y4x3(x)243xxxy所以limlim(43x)4xx0x0概括求导数的一般步骤:一差二比三极限.设计妄图:熟悉导数定义,能进行简单地计算.种类二:导数的应用例2将原油精髓为汽油、柴油、塑胶等各种不同样产品,需要对原油进行冷却和加热.若是在第xh时,原油的温度(单位:0c)为f(x)x27x15(0x8).计算第2h和第6h时,原油温度的瞬时变化率,并说明它们的意义解:在第2h时和第6h时,原油温度的瞬时变化率就是f'(2)和f'(6),依照导数定义,yf(2x)f(x0)xx(2x)27(2x)15(227215)x3xf所以f(2)limlim(x3)3x同理可得:fx0x0(6)5.表示在第2h时和第6h时,原油温度的瞬时变化率分别为3和5,说明在2h周边,原油温度大体以3C/h的速率下降,在第6h周边,原油温度大体以5C/h的速率上升.练习2:计算第3h和第5h时原油温度的瞬时变化率,并说明它们的意义.解:同理可得,f(3)1,f(5)3.表示在第3h时和第5h时,原油温度的瞬时变化率分别为1和3,说明在3h周边,原油温度大体以1C/h的速率下降,在第5h周边,原油温度大体以3C/h的速率上升.总结:函数平均变化率的符号刻画的是函数值的增减,它的绝对值反响函数值变化的快慢

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论