专题12 矩形、菱形和正方形(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第1页
专题12 矩形、菱形和正方形(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第2页
专题12 矩形、菱形和正方形(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第3页
专题12 矩形、菱形和正方形(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第4页
专题12 矩形、菱形和正方形(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【有答案】_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题12矩形、菱形和正方形复习考点攻略考点一矩形1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.【例1】如图,在矩形中,对角线,相交于点,点,分别是,的中点,连接,若,,则的长是()A. B. C. D.【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=OD=OB,∵,,∴AC=∴BD=10cm,∴,∵点,分别是,的中点,∴.故选:D.【例2】如图,已知平行四边形ABCD中,E是BC的中点,连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF,求证:四边形ABFC是矩形.【答案】见解析【解析】∵四边形ABCD是平行四边形∴∴∵E为BC的中点∴∴∴∵∴四边形ABFC是平行四边形∴平行四边形ABFC是矩形.考点二菱形1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)有一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边都相等的四边形是菱形.【例3】如图,在菱形中,,点在上,若,则__________.【答案】115°【解析】解:四边形ABCD是菱形,,∴AB∥CD,∴∠BCD=180°-∠B=130°,∠ACE=∠BCD=65°,∵,∴∠ACE=∠AEC=65°,∴∠BAE=180°-∠AEC=115°.【例4】如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.【答案】见解析【解析】∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴∠FAD=∠EDA,∵AD是∠BAC的平分线,∴∠EAD=∠FAD,∴∠EAD=∠EDA,∴AE=ED,∴四边形AEDF是菱形.考点三正方形1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)有一个角是直角,且有一组邻边相等的平行四边形是正方形;(2)一组邻边相等的矩形是正方形;(3)一个角是直角的菱形是正方形;(4)对角线相等且互相垂直、平分的四边形是正方形.【例5】如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A. B. C. D.【答案】A【解析】正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选A.【例6】如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣) B.(1,0)C.(﹣,﹣) D.(0,﹣1)【答案】A.【解析】解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252…余3,∴点A2019的坐标为(,﹣)故选:A.考点四四边形、平行四边形和特殊四边形的关系①两组对边分别平行;②相邻两边相等;③有一个角是直角;④有一个角是直角;⑤相邻两边相等;⑥有一个角是直角,相邻两边相等;⑦四边相等;⑧有三个角都是直角.【例7】如图,在四边形ABCD中,AB=CD,AC、BD是对角线,E、F、G、H分别是AD、BD、BC、AC的中点,连接EF、FG、GH、HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形【答案】C【解析】由点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,根据三角形中位线性质,得EF=GH=AB,EH=FG=CD,又由AB=CD,得EF=FG=GH=EH时,四边形EFGH是菱形.∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵AB=CD,∴EF=FG=GH=EH时,四边形EFGH是菱形,故选C.考点五中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.【例8】如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分 B.相等 C.互相垂直 D.互相垂直平分【答案】C【解析】根据题意画出图形如下:答:AC与BD的位置关系是互相垂直.

证明:∵四边形EFGH是矩形,∴∠FEH=90°,

又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,

∴EF∥BD,∴∠FEH=∠OMH=90°,

又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,

∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选C.第一部分选择题一、选择题(本题有10小题,每题4分,共40分)1.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【答案】A【解析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.2.如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A. B. C. D.【答案】D.【解答】∵四边形ABCD为菱形,AB=2,∠DAB=60°∴AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CB∴CE=CF=∴△CEF为等边三角形∴S△CEF==3.顺次连接菱形四边的中点得到的四边形一定是()A.正方形 B.菱形 C.矩形 D.以上都不对【答案】C【解析】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:C.4.把边长分别为1和2的两个正方形按图的方式放置.则图中阴影部分的面积为() 【答案】A【解析】阴影部分面积=1××=如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360° B.540° C.630° D.720°【答案】C.【解析】一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4 B.4 C.10 D.8【答案】A【解析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.7.如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()A. B. C.4 D.【答案】D【详解】解:记AC与BD的交点为,菱形,菱形的面积菱形的面积故选D.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分 B.相等 C.互相垂直 D.互相垂直平分【答案】C【解析】根据题意画出图形如下:答:AC与BD的位置关系是互相垂直.

证明:∵四边形EFGH是矩形,∴∠FEH=90°,

又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,

∴EF∥BD,∴∠FEH=∠OMH=90°,

又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,

∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选C.如图,在中,,高,正方形一边在上,点分别在上,交于点,则的长为()A. B. C. D.【答案】B【解析】解:∵四边形EFGH是正方形,∴EF∥BC,∴△AEF∽△ABC,∴.设AN=x,则EF=FG=DN=60-x,∴解得:x=20所以,AN=20.故选:B.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2 B.84cm2 C.72cm2 D.56cm2【答案】C【解析】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y=,解得EH=AB=6,∴BH=AE=8,由图2可知当x=14时,点P与点D重合,∴ED=4,∴BC=AD=12,∴矩形的面积为12×6=72.故选:C.填空题填空题(本题有6小题,每题4分,共24分)11.如图,在矩形ABCD中,,,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是___________(结果保留).【答案】【解析】12.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.【答案】24【解析】∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=2413.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.【答案】6﹣.【解析】设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可.设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.14.如图,在2×6的网格中,每个小正方形的边长都是1个单位长度,网格中小正方形的顶点叫格点,点A,B,C在格点上,连接AB,BC,则tan∠ABC=.【答案】1【解析】连接AD,根据网格利用勾股定理求出AB,AD,BD的长,利用勾股定理的逆定理判断出三角形ABD为直角三角形,利用锐角三角函数定义求出所求即可.连接AD,由勾股定理得:AD==,AB==2,BD==,∵()2+(2)2=()2,即AD2+AB2=BD2,∴△ABD为∠BAD是直角的直角三角形,∴tan∠ABC===如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.16.一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为___________.【答案】或【解析】解:由题干描述可作出两种可能的图形.①MN交DC的延长线于点F,如下图所示∵高AE等于边长的一半∴在Rt△ADE中,又∵沿MN折叠后,A与B重合∴∴②MN交DC的延长线于点F,如下图所示同理可得,,此时,故答案为:或.第三部分解答题三、解答题(本题有7小题,共56分)17.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.【答案】(1)见解析;(2)见解析.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.18.如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.【答案】见解析.【解析】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.如图,在菱形ABCD中,点E.F分别为AD.CD边上的点,DE=DF,求证:∠1=∠2.【答案】见解析.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.20.如图,在菱形中,将对角线分别向两端延长到点和,使得.连接.求证:四边形是菱形.【答案】见解析【解析】证明:连接BD,交AC于O,如图所示:

∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,

∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,

∵EF⊥BD,∴四边形BEDF是菱形.21.如图,在矩形ABCD中,AB=3cm,AD=4cm,EF经过对角线BD的中点O,分别交AD,BC于点E,F.(1)求证:△BOF≌△DOE;(2)当EF⊥BD时,求AE的长.【答案】(1)见解析;(2)78【解析】(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠BFO=∠DEO,∠FBO=∠EDO,又∵O是BD中点,∴OB=OD,∴△BOF≌△DOE(ASA)(2)连接BE.∵EF⊥BD,O为BD中点,∴EB=ED,设AE=xcm,由EB=ED=AD﹣AE=(4﹣x)cm,在Rt△ABE中,AB=3cm,根据勾股定理得:AB2+AE=BE2,即9+x2=(4﹣x)2,解得:x=78∴AE的长是78如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论