版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
arXiv:2303.06930v1[cs.CV]13Mar2023
TwinContrastiveLearningwithNoisyLabels
ZhizhongHuang1
HongmingShan2.3*
JunpingZhang1
1ShanghaiKeyLabofIntelligentInformationProcessing,SchoolofComputerScience,FudanUniversity,Shanghai200433,China
2
InstituteofScienceandTechnologyforBrain-inspiredIntelligenceandMOEFrontiersCenterforBrainScience,FudanUniversity,Shanghai200433,China
3ShanghaiCenterforBrainScienceandBrain-inspiredTechnology,Shanghai200031,China(zzhuang19,jpzhang,hmshan}@
Abstract
Learningfromnoisydataisachallengingtaskthatsig-nificantlydegeneratesthemodelperformance.Inthispaper,wepresentTCL,anoveltwincontrastivelearningmodeltolearnrobustrepresentationsandhandlenoisylabelsforclassification.Specifically,weconstructaGaussianmix-turemodel(GMM)overtherepresentationsbyinjectingthesupervisedmodelpredictionsintoGMMtolinklabel-freelatentvariablesinGMMwithlabel-noisyannotations.Then,TCLdetectstheexampleswithwronglabelsastheout-of-distributionexamplesbyanothertwo-componentGMM,takingintoaccountthedatadistribution.Wefurtherproposeacross-supervisionwithanentropyregularizationlossthatbootstrapsthetruetargetsfrommodelpredictionstohandlethenoisylabels.Asaresult,TCLcanlearndiscriminativerepresentationsalignedwithestimatedlabelsthroughmixupandcontrastivelearning.Extensiveexperimentalresultsonseveralstandardbenchmarksandreal-worlddatasetsdemonstratethesuperiorperformanceofTCL.Inparticular,TCLachieves7.5%improvementsonCIFAR-10with90%noisylabel—anextremelynoisyscenario.Thesourcecodeisavailableat
/Hzzone/TCL
.
1.Introduction
Deepneuralnetworkshaveshownexcitingperformanceforclassificationtasks[
13
].Theirsuccesslargelyresultsfromthelarge-scalecurateddatasetswithcleanhumananno-tations,suchasCIFAR-10[
19
]andImageNet[
6
],inwhichtheannotationprocess,however,istediousandcumbersome.Incontrast,onecaneasilyobtaindatasetswithsomenoisyannotations—fromonlineshoppingwebsites[
40
],crowd-sourcing[
42
,
45
],orWikipedia[
32
]—fortrainingaclas-
*Correspondingauthor
sificationneuralnetwork.Unfortunately,themislabelleddataarepronetosignificantlydegradetheperformanceofdeepneuralnetworks.Therefore,thereisconsiderableinter-estintrainingnoise-robustclassificationnetworksinrecentyears[
20
,
21
,
25
,
29
,
31
,
48
].
Tomitigatetheinfluenceofnoisylabels,mostofthemeth-odsinliteratureproposetherobustlossfunctions[
37
,
47
],reducetheweightsofnoisylabels[
35
,
39
],orcorrectthenoisylabels[
20
,
29
,
31
].Inparticular,labelcorrectionmeth-odshaveshowngreatpotentialforbetterperformanceonthedatasetwithahighnoiseratio.Typically,theycorrectthelabelsbyusingthecombinationofnoisylabelsandmodelpredictions[
31
],whichusuallyrequireanessentialitera-tivesampleselectionprocess[
1
,
20
,
21
,
29
].Forexample,Arazoetal.[
1
]usesthesmall-losstricktocarryoutsampleselectionandcorrectlabelsviatheweightedcombination.Inrecentyears,contrastivelearninghasshownpromisingresultsinhandlingnoisylabels[
21
,
21
,
29
].Theyusuallyleveragecontrastivelearningtolearndiscriminativerepre-sentations,andthencleanthelabels[
21
,
29
]orconstructthepositivepairsbyintroducingtheinformationofnearestneighborsintheembeddingspace.However,usingthenear-estneighborsonlyconsidersthelabelnoisewithinasmallneighborhood,whichissub-optimalandcannothandleex-tremelabelnoisescenarios,astheneighboringexamplesmayalsobemislabeledatthesametime.
Toaddressthisissue,thispaperpresentsTCL,anoveltwincontrastivelearningmodelthatexploresthelabel-freeunsupervisedrepresentationsandlabel-noisyannotationsforlearningfromnoisylabels.Specifically,weleveragecontrastivelearningtolearndiscriminativeimagerepresen-tationsinanunsupervisedmannerandconstructaGaus-sianmixturemodel(GMM)overitsrepresentations.Un-likeunsupervisedGMM,TCLlinksthelabel-freeGMMandlabel-noisyannotationsbyreplacingthelatentvariableofGMMwiththemodelpredictionsforupdatingthepa-rametersofGMM.Then,benefittingfromthelearneddata
2
distribution,weproposetoformulatelabelnoisedetectionasanout-of-distribution(OOD)problem,utilizinganothertwo-componentGMMtomodelthesampleswithcleanandwronglabels.ThemeritoftheproposedOODlabelnoisedetectionistotakethefulldatadistributionintoaccount,whichisrobusttotheneighborhoodwithstronglabelnoise.Furthermore,weproposeabootstrapcross-supervisionwithanentropyregulationlosstoreducetheimpactofwronglabels,inwhichthetruelabelsofthesampleswithwrongla-belsareestimatedfromanotherdataaugmentation.Last,tofurtherlearnrobustrepresentations,weleveragecontrastivelearningandMixuptechniquestoinjectthestructuralknowl-edgeofclassesintotheembeddingspace,whichhelpsaligntherepresentationswithestimatedlabels.
Thecontributionsaresummarizedasfollows:
•WepresentTCL,anoveltwincontrastivelearningmodelthatexploresthelabel-freeGMMforunsuper-visedrepresentationsandlabel-noisyannotationsforlearningfromnoisylabels.
•WeproposeanovelOODlabelnoisedetectionmethodbymodelingthedatadistribution,whichexcelsathan-dlingextremelynoisyscenarios.
•Weproposeaneffectivecross-supervision,whichcanbootstrapthetruetargetswithanentropylosstoregu-larizethemodel.
•Experimentalresultsonseveralbenchmarkdatasetsandreal-worlddatasetsdemonstratethatourmethodoutperformstheexistingstate-of-the-artmethodsbyasignificantmargin.Inparticular,weachieve7.5%improvementsinextremelynoisyscenarios.
2.RelatedWork
Contrastivelearning.Contrastivelearningmethods[
3
,
12
,
38
]haveshownpromisingresultsforbothrepresentationlearninganddownstreamtasks.ThepopularlossfunctionisInfoNCEloss[
28
],whichcanpulltogetherthedataaug-mentationsfromthesameexampleandpushawaytheothernegativeexamples.MoCo[
12
]usesamemoryqueuetostoretheconsistentrepresentations.SimCLR[
3
]optimizesInfoNCEwithinmini-batchandhasfoundsomeeffectivetrainingtricks,e.g.,dataaugmentation.However,asunsuper-visedlearning,theymainlyfocusoninducingtransferablerepresentationsforthedownstreamtasksinsteadoftrainingwithnoisyannotations.Althoughsupervisedcontrastivelearning[
17
]canimprovetherepresentationsbyhumanla-bels,itharmstheperformancewhenlabelnoiseexists[
23
].
Learningwithnoisylabels.Mostofthemethodsinlitera-turemitigatethelabelnoisebyrobustlossfunctions[
7
,
25
,
36
,
37
,
41
,
47
],noisetransitionmatrix[
8
,
30
,
35
,
39
],samplese-lection[
11
,
44
],andlabelcorrection[
18
,
20
–
22
,
25
,
29
,
31
,
34
].
Inparticular,labelcorrectionmethodshaveshownpromis-ingresultsthanothermethods.Arazoetal.[
1
]appliedamixturemodeltothelossesofeachsampletodistinguishthenoisyandcleanlabels,inspiredbythefactthatthenoisysampleshaveahigherlossduringtheearlyepochsoftrain-ing.Similarly,DivideMix[
20
]employstwonetworkstoperformthesampleselectionforeachotherandappliesthesemi-supervisedlearningtechniquewherethetargetsarecomputedfromtheaveragepredictionsofdifferentdataaug-mentations.Duetothesuccessofcontrastivelearning,manyattemptshavebeenmadetoimprovetherobustnessofclas-sificationtasksbycombiningtheadvantagesofcontrastivelearning.Zheltonozhskiietal.[
48
]usedcontrastivelearningtopre-traintheclassificationmodel.MOIT[
29
]quantifiesthisagreementbetweenfeaturerepresentationandoriginallabeltoidentifymislabeledsamplesbyutilizingak-nearestneighbor(k-NN)search.RRL[
21
]performslabelclean-ingbytwothresholdsonthesoftlabel,whichiscalculatedfromthepredictionsofpreviousepochsanditsnearestneigh-bors.Sel-CL[
23
]leveragesthenearestneighborstoselectconfidentpairsforsupervisedcontrastivelearning[
17
].
Unlikeexistingmethods[
21
,
23
,
29
]thatdetectthewronglabelswithintheneighborhood,TCLformulatesthewronglabelsastheout-of-distributionexamplesbymodelingthedatadistributionofrepresentationslearnedbycontrastivelearning.Inaddition,weproposeacross-supervisionwithentropyregularizationtobetterestimatethetruelabelsandhandlethenoisylabels.
3.TheProposedTCL
EachimageindatasetD={zi}associateswithanannotationye{1,2,...,K}.Inpractice,someexamplesmaybemislabeled.Weaimtotrainaclassificationnetwork,pθ(y|z)=g(z;θ)eRK,thatisresistanttothenoisylabelsintrainingdata,andgeneralizeswellonthecleantestingdata.Fig.
1
illustratestheframeworkofourproposedTCL.
Overview.Inthecontextofourframework,f(.)andg(.)sharethesamebackboneandhaveadditionalindividualheadstooutputrepresentationsandclasspredictionsfromtworandomandonemixupdataaugmentations.Afterward,therearefourcomponentsinTCL,including(i)modelingthedatadistributionviaaGMMinSec.
3.1
fromthemodelpredictionsandrepresentations;(ii)detectingtheexampleswithwronglabelsasout-of-distributionsamplesinSec.
3.2
;(iii)cross-supervisionbybootstrappingthetruetargetsinSec.
3.3
;and(iv)learningrobustrepresentationsthroughcontrastivelearningandmixupinSec.
3.4
.
3.1.ModelingDataDistribution
GiventheimagedatasetconsistingofNimages,weopttomodelthedistributionofzoveritsrepresentationg=f(z)viaasphericalGaussianmixturemodel(GMM).Afterin-
3
ClassPredictions
2ndview
InputAugmentationBackboneHead
1stview
mixupview
Sec3.3:
Sec3.1:ModelingDataDistribution
CrossSupervision
Crong
?lbWnorwronglWabls?
?lbWn
Sec3.2:LabelNoiseDetection
mixupview
Sec.3.4:
LearningRobustRepresentations
Representations
GMMofDataDistribution
1stview
Encoder
2ndview
MLP
MLP
Figure1.IllustrationoftheproposedTCL.Thenetworksgandfwithsharedencoderandindependenttwo-layerMLPoutputtheclasspredictionsandrepresentations.Then,TCLmodelsthedatadistributionviaaGMM,anddetectstheexampleswithwronglabelsasout-of-distributionexamples.TooptimizeTCL,theseresultsleadtocross-supervisionandrobustrepresentationlearning.
troducingdiscretelatentvariablesze{1,2,...,K}thatdeterminetheassignmentofobservationstomixturecompo-nents,theunsupervisedGMMcanbedefinedas
K
p(U)=Lk=1p(U,z=k)
=Lk=1p(z=k)N(U|uk,σk).(1)
K
whereukisthemeanandσkascalardeviation.Ifweassumethatthelatentvariableszareuniformdistributed,thatis,p(z=k)=1/K,wecandefinetheposteriorprobabilitythatassignszitok-thcluster:
γik=p(zi=k|zi)xN(zi|uk,σk).(2)
Inanidealscenariowhereallthesampleshavecleanlabelsye{1,2,...,K},thediscretelatentvariableszwouldbeidenticaltotheannotationy,andtheparametersuk,σkandlatentvariablezcanbesolvedthroughastandardExpectation-Maximization(EM)algorithm[
5
].
However,inpractice,thelabelsareoftennoisyandthelatentvariablez,estimatedinanunsupervisedmanner,hasnothingtodowiththelabely.Therefore,weareinterestedinconnectinglatentvariablez,estimatedinanunsuper-visedfashion(i.e.label-free),andtheavailableannotationsy,label-noisy,forthetaskoflearningfromnoisylabels.
Tolinkthemtogether,weproposetoinjectthemodelpre-dictionspθ(yi=k|zi),learnedfromnoisylabels,intothelatentvariablesz.Specifically,weproposetoreplacetheun-supervisedassignmentp(zi=k|zi)withnoisy-supervisedassignmentpθ(yi=k|zi).Asaresult,wecanconnectthelatentvariablezwiththelabely,andthususethenoisysupervisiontoguidetheupdateoftheparametersofGMM.
Inparticular,theupdateoftheGMMparametersbecomes
uk=norm╱、,
←ipθ(yi=k|zi),
σk=←ipθ(yi=k|zi)(Ui-uk)(Ui-uk)T
(3)
(4)
wherenorm(.)ise2-normalizationsuchthat|uk|2=1.
3.2.Out-Of-DistributionLabelNoiseDetection
Previousworks[
21
,
23
,
29
]typicallydetectthewronglabelswithintheneighborhood,thatis,usingtheinformationfromnearestneighbors.Itislimitedastheneighboringexamplesareusuallymislabeledatthesametime.Toaddressthisissue,weproposetoformulatelabelnoisedetectionastodetecttheout-of-distributionexamples.
Afterbuildingtheconnectionbetweenthelatentvariableszandlabelsy,weareabletodetectthesamplewithwronglabelsthroughtheposteriorprobabilityinEq.(
2
).Weim-plementitasanormalizedversiontotakeintoaccounttheintra-clusterdistance,whichallowsfordetectingthesampleswithlikelywronglabels:
←kexp(-(Ui-uk)T(Ui-uk)/2σk).
γik=exp╱-(Ui-uk)T(Ui-µk)/2σk、(5)
Sincee2-normalizationhasbeenappliedtobothembeddingsUandtheclustercentersuk,yielding(U-uk)T(U-uk)=2-2UTuk.Therefore,wecanre-writeEq.(
5
)as:
γik=p(zi=k|zi)
=exp(Uuk/σk)\Lkexp(Uuk/σk).(
6)
OncebuilttheGMMoverthedistributionofrepresenta-tions,weproposetoformulatetheconventionalnoisylabel
4
detectionproblemasout-of-distributionsampledetectionproblem.Ourideaisthatthesampleswithcleanlabelsshouldhavethesameclusterindicesafterlinkingtheclusterindexandclasslabel.Specifically,givenoneparticularclassy=k,thesampleswithinthisclasscanbedividedintotwotypes:in-distributionsampleswithcleanlabels,andout-of-distributionsampleswithwronglabels.Therefore,wedefinethefollowingconditionalprobabilitytomeasuretheprobabilityofonesamplewithcleanlabel:
γy=Xìi=p(yi=zi|zi)
=exp(guXi/σXi)′Lkexp(guk/σk).(
7)
AlthoughEqs.(
6
)and(
7
)sharesimilarcalculations,theyhavedifferentmeanings.Eq.(
6
)calculatestheprobabilityofoneexamplebelongingtok-thclusterwhileEq.(
7
)theprobabilityofoneexamplehavingcleanlabel—thatis,yi=zi.Therefore,theprobabilityofoneexamplehavingthewronglabelcanbewrittenasγyXìi=p(yizi|zi)=1-p(yi=zi|zi).
Furthermore,insteadofsettingahuman-tunedthresholdforγy=Xìi,weopttoemployanothertwo-componentGMMfollowing[
1
,
20
]toautomaticallyestimatethecleanproba-bilityγy=Xìiforeachexample.SimilartothedefinitionofGMMinEq.(
1
),thistwo-componentsGMMisdefinedasfollows:
11
p(γy=Xìi)=Lp(γy=Xìi,c)=Lp(c)p(γy=Xìi|c),(8)
c=0c=0
wherecisthenewintroducedlatentvariable:c=1indicatestheclusterofcleanlabelswithhighermeanvalueandviceversusc=0.AftermodelingtheGMMovertheprobabilityofoneexamplehavingcleanlabels,γy=Xìi,weareabletoinfertheposteriorprobabilityofoneexamplehavingcleanlabelsthroughthetwo-componentGMM.
3.3.Cross-supervisionwithEntropyRegularization
Afterthelabelnoisedetection,thenextimportantstepistoestimatethetruetargetsbycorrectingthewrongla-beltoreduceitsimpact,calledlabelcorrection.Previousworksusuallyperformlabelcorrectionusingthetemporalensembling[
25
]orfromthemodelpredictions[
1
,
20
]beforemixupaugmentationwithoutback-propagation.
TCLleveragesasimilarideatobootstrapthetargetsthroughtheconvexcombinationofitsnoisylabelsandthepredictionsfromthemodelitself:
,(9)
whereg(z)andg(z)arethepredictionsoftwoaug-mentations,yithenoisyone-hotlabel,andwie[0,1]rep-resentstheposteriorprobabilityasp(c=1|γy=Xìi)fromthe
two-componentGMMdefinedinEq.(
8
).Whencomput-ingEq.(
9
),westopthegradientfromgtoavoidthemodelpredictionscollapsedintoaconstant,inspiredby[
4
,
10
].
Guidedbythecorrectedlabelsti,weswaptwoaugmen-tationstocomputetheclassificationlosstwice,leadingto
thebootstrapcrosssupervision,formulatedas:
ccross=e╱g(z),t、+e╱g(z),t、,(
10)
whereeisthecross-entropyloss.Thislossmakesthepre-dictionsofthemodelfromtwodataaugmentationsclosetocorrectedlabelsfromeachother.Inasense,ifwi=0,themodelisencouragedforconsistentclasspredictionsbe-tweendifferentdataaugmentations,otherwisewi=1itissupervisedbythecleanlabels.
Inaddition,weleverageanadditionalentropyregulariza-tionlossonthepredictionswithinamini-batchB:
creg=-H╱g(z)\+H(g(z)),(11)
whereH(.)istheentropyofpredictions[
33
].Thefirsttermcanavoidthepredictionscollapsingintoasingleclassbymaximizingtheentropyofaveragepredictions.Thesecondtermistheminimumentropyregularizationtoencouragethemodeltohavehighconfidenceforpredictions,whichwaspreviouslystudiedinsemi-supervisedlearningliterature[
9
]. Althoughbothusingthemodelpredictions,wewouldemphasizethatthecross-supervisioninTCLisdifferent
to[
1
,
20
,
25
]inthreeaspects:(i)bothzandzarein-volvedinback-propagation;(ii)thestrongaugmentation[
3
]usedtoestimatethetruetargetscanpreventtheoverfitting
ofestimatedtargets;and(iii)TCLemploystwoentropy
regularizationtermstoavoidthemodelcollapsetooneclass.Thefinalclassificationlossisgivenasfollows:
ccls=ccross+creg.(12)
3.4.LearningRobustRepresentations
Tomodelthedatadistributionthatisrobusttonoisylabels,weleveragecontrastivelearningtolearntherepre-sentationsofimages.Specifically,contrastivelearningper-formsinstance-wisediscrimination[
38
]usingtheInfoNCEloss[
28
]toenforcethemodeloutputtingsimilarembed-dingsfortheimageswithsemanticpreservingperturbations.Formally,thecontrastivelossisdefinedasfollows:
(13)
←℃炷éexp╱f(z(1))Tf(z)/τ、,
exp╱f(z(1))Tf(z(2))/τ、cctr=-log
whereτisthetemperatureandsistheBexceptz(1).z(1)andz(2)aretwoaugmentationsofz.Intuitively,InfoNCElossaimstopulltogetherthepositivepair(z(1),z(2))from
5
twodifferentaugmentationsofthesameinstance,andpushthemawayfromnegativeexamplesofotherinstances.Con-sequently,itcanencouragediscriminativerepresentationsinapureunsupervised,orlabel-freemanner.
Althoughbeneficialinmodelinglatentrepresentations,
contrastivelearningcannotintroducecompactclasseswith-outusingthetruelabels.Sincethelabelyisnoisy,welever-ageMixup[
46
]toimprovewithin-classcompactness,whichhasbeenshownitseffectivenessagainstlabelnoiseinlitera-ture[
1
,
20
].Specifically,amixuptrainingpair(z,)islinearlyinterpolatedbetween(zi,i)and(zj,j)underacontrolcoefficientλ~Beta(α,α):
,(14)
wherezjisrandomlyselectedwithinamini-batch,andi=(t+t)/2istheaverageofestimatedtruelabelsoftwodataaugmentations.Intuitively,wecaninjectthestructuralknowledgeofclassesintotheembeddingspace
learnedbycontrastivelearning.Thislosscanbewrittenas:
calign=e╱g(z),、+e(p(:|z),),(15)
wherethesecondtermcanaligntherepresentationswithestimatedlabels.Inasense,calignregularizesclassificationnetworkgandencouragesftolearncompactandwell-separatedrepresentations.Furthermore,wewouldpointouttwodifferencesbetweenTCLand[
21
],althoughbothusingmixuptoboosttherepresentations.First,[
21
]doesnotexplicitlymodelthedatadistributionp(:|z)likeTCL.
Second,TCLhasleveragedthefulltrainingdatasetviathe
correctedlabelinsteadofasubsetofcleanexamplesin[
21
],whichleadstostrongerrobustnessofTCLover[
21
]onextremehighlabelnoiseratios.
3.5.Trainingandinference
Theoveralltrainingobjectiveistominimizethesumofalllosses:
c=ccls+cctr+calign.(16)
Wefindthatasimplesummationofalllossesworkswellforalldatasetsandnoiselevels,whichindicatesthestronggeneralizationoftheproposedmethod.Duringinference,thedataaugmentationsaredisabledandtheclasspredictionsareobtainedbyargmaxkpθ(k|女).
ThetrainingalgorithmoftheproposedmethodisshowninAlg.
1
.Inasense,thearchitectureofourmethodleadstoanEM-likealgorithm:(1)theE-stepupdates{(uk,σk)}forTCL,and{wi}foreachsampleinDtoformthetruetargetswiththepredictionsfromanotherdataaugmentations,and(2)theM-stepoptimizesthemodel
Algorithm1:TrainingAlgorithm
Input:DatasetD={(zi,yi)};functions{f,g}Output:Classificationnetworkg.
repeat
E-step:update{(uk,σk)}forTCL,and{wi}foreachsampleinD
M-step:repeat
Randomlysampleamini-batchBfromDforeachziinBdo
Randomlysampletwoaugmentations
c-Eq.(
16
)
andamixupone:{z,z,z}
end
UpdatefandgwithSGDoptimizer.untilanepochfinished;
untilreachingmaxepochs;
parametersbyEq.(
16
)tobetterfitthoseestimatedtargets.Therefore,theconvergenceofTCLcanbetheoreticallyguar-anteed,followingthestandardEMalgorithm.
4.Experiments
Inthissection,weconductexperimentsonmultiplebenchmarkdatasetswithsimulatedandreal-worldlabelnoises.Westrictlyfollowtheexperimentalsettingsinprevi-ousliterature[
20
,
21
,
25
,
29
]forfaircomparisons.
4.1.Experimentsonsimulateddatasets
Datasets.Following[
20
,
21
,
25
,
29
],wevalidateourmethodonCIFAR-10/100[
19
],whichcontains50Kand10Kim-ageswithsize32×32fortrainingandtesting,respectively.Weleave5Kimagesfromthetrainingsetasthevalidationsetforhyperparametertuning,thentrainthemodelonthefulltrainingsetforfaircomparisons.Twotypesoflabelnoisearesimulated:symmetricandasymmetriclabelnoise.Symmetricnoiserandomlyassignsthelabelsofthetrain-ingsettorandomlabelswithpredefinedpercentages,a.k.a,noiseratio,whichincludes20%,50%,80%,and90%ontwodatasetsinthispaper.Asymmetricnoisetakesintoac-counttheclasssemanticinformation,andthelabelsareonlychangedtosimilarclasses(e.g.,truck→automobile).Here,onlyexperimentsontheCIFAR-10datasetwith40%noiseratioforasymmetricnoiseareconducted;otherwise,theclasseswithabove50%labelnoisecannotbedistinguished.
Trainingdetails.Sameaspreviousworks[
20
,
21
,
25
,
29
],weuseaPreActResNet-18[
14
]astheencoder.WeadoptSGDoptimizertotrainourmodelwithamomentumof0.9,aweightdecayof0.001,andabatchsizeof256for200epochs.Thelearningratearelin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025西藏昌都澜沧江投资有限责任公司招聘1人考试重点题库及答案解析
- 房屋买断权协议书
- 废品转让协议书
- 工厂投资合同范本
- 床子出租协议书
- 学生拜师协议书
- 延期留用协议书
- 小店股权协议书
- 误伤同伴的协议书
- 项目打印机合同范本
- 《苏教版六年级》数学上册期末总复习课件
- 光缆海底故障诊断-深度研究
- 2024年天津高考英语第二次高考真题(原卷版)
- 降低卧床患者便秘品管圈课件
- 工程测量水准仪课件
- 公司委托法人收款到个人账户范本
- 《枫丹白露宫苑景观分析》课件
- 中国石油大学(华东)自动控制课程设计 双容水箱系统的建模、仿真于控制-2
- 潘谢矿区西淝河、泥河、济河、港河水体下安全开采可行性论证报告
- 创业人生(上海大学)【超星尔雅学习通】章节答案
- GB/T 4957-2003非磁性基体金属上非导电覆盖层覆盖层厚度测量涡流法
评论
0/150
提交评论