2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 (解析版)_第1页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 (解析版)_第2页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 (解析版)_第3页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 (解析版)_第4页
2022-2023学年高一数学 人教A版2019必修第一册 同步讲义 第18讲 对数及对数式运算5大常考题型总结 (解析版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第Page\*MergeFormat1页共NUMPAGES\*MergeFormat14页第18讲对数及对数式运算5大常考题型总结【考点分析】考点一:对数式的运算①对数的定义:一般地,如果且,那么数叫做以为底的对数,记作,读作以为底的对数,其中叫做对数的底数,叫做真数.②常见对数的写法:1.一般对数:以且为底,记为,读作以为底的对数;2.常用对数:以为底,记为;3.自然对数:以为底,记为;③对数的性质:1.特殊对数:;;其中且2.对数恒等式:(其中且,)3.对数换底公式: 如:.倒数原理: 如:.约分法则:④对数的运算法则:1.;2.;3.,;4.和.【题型目录】题型一:对数的定义题型二:指数对数的互化题型三:对数的运算求值题型四:换底公式的应用题型五:对数式的应用题【典型例题】题型一:对数的定义【例1】(2021·全国高一课前预习)在中,实数的取值范围为______.【答案】【解析】由题意,要使式子有意义,则满足,解得或,即实数的取值范围为.故答案为:.【题型专练】1.(2022江苏省江阴市第一中学高一期中)使式子有意义的的取值范围是(

)A. B. C. D.且【答案】D【分析】对数函数中,底数大于0且不等于1,真数大于0,列出不等式,求出的取值范围.【详解】由题意得:,解得:且.故选:D2.(2022全国·高一课时练习)若有意义,则实数k的取值范围是______.【答案】【分析】结合对数性质建立不等关系,即可求解.【详解】若有意义,则满足,解得.故答案为:题型二:指数对数的互化【例1】(2022全国高一专题练习)将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=;(3)log3=-3.【答案】(1)log5125=3;(2);(3)【解析】(1)∵53=125,∴log5125=3.(2)∵,∴.(3)∵,∴【题型专练】1.(2022全国高一课前预习)把下列指数式化为对数式,对数式化为指数式.(1);(2);(3).【答案】(1);(2);(3).【解析】(1)由可得;(2)由得;(3)由可得.2.(2022全国高一课时练习)指数式和对数式互相转化:(1)____________.(2)____________.(3)____________.(4)____________.【答案】【解析】.故答案为:,,,.题型三:对数的运算求值【例1】(2022·浙江·高考真题)已知,则(

)A.25 B.5 C. D.【答案】C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为,,即,所以.故选:C.【例2】(2022陕西·长安一中高一期中)设函数,则=(

)A. B. C. D.【答案】C【分析】根据给定分段函数直接计算即可得解【详解】函数,则,,所以.故选:C【例3】(2022全国高一专题练习)计算:(1)_________.(2)_________.(3)_________.(4)__________.(5)__________.【答案】1【解析】(1)原式(2)原式(3)原式(4)原式(5)所以原式故答案为:1,,,,【例4】(2022·全国·高一课时练习)已知,则______.【答案】10【分析】由同底数对数加法公式以及,可得答案.【详解】因为,所以.故答案为:.【例5】(2022·陕西·西安市雁塔区第二中学高二期末(文))计算:__________【答案】1【分析】根据指数的运算以及对数的运算性质即可求出.【详解】原式=.故答案为:1.【例6】(2021·江苏省沭阳高级中学高一期中)已知,,且,则的最小值为___________.【答案】【分析】由可得,则化简后利用基本不等式可求得答案【详解】因为,所以,所以,因为,,所以,当且仅当,即时取等号,,所以的最小值为,故答案为:【题型专练】1.(2020全国卷Ⅰ)设,则()A. B. C. D.【答案】B【详解】因,所以,故2.(2022·陕西·宝鸡市渭滨区教研室高二期末(文))若,则_________.【答案】5【分析】根据给定的分段函数,直接代值计算作答.【详解】因函数,所以.故答案为:53.(2022长沙市明德中学高一开学考试)计算:______【答案】【解析】原式.故答案为:4.(2022·江苏·高一)计算___________【答案】【分析】利用对数运算及指数式与对数式互化计算作答【详解】.故答案为:6.(2022·陕西·交大附中模拟预测(理))设函数,则(

)A.5 B.6 C.7 D.8【答案】D【分析】根据给定的分段函数,判断自变量取值区间,再代入计算作答.【详解】因,则,而,所以.故选:D7.(2022江苏高二课时练习)若,,,则的最小值为()A.9 B.8 C.7 D.6【答案】A【详解】因,所以,所以,所以,即,所以8.(2022全国高一课时练习)计算:________.【答案】4【解析】原式.故答案为:4.9.(2022全国高一课时练习)计算:____.【答案】【解析】原式,故答案为:.题型四:换底公式的应用【例1】(2022·全国·高一课时练习)已知,,则(

)A.1 B.2 C.5 D.4【答案】A【分析】先求得,然后结合对数运算求得正确答案.【详解】∵,,∴,,.故选:A【例2】(2022全国高一课时练习)设,且,则()A. B.10 C.20 D.100【答案】A【解析】由,可得,,由换底公式得,,所以,又因为,可得.故选:A.【例3】(2022·全国·高一课时练习)已知,,则(

)A.B.C.D.【答案】D【分析】利用对数的运算法则及性质进行运算可得答案.【详解】因为,,所以.故选:D.【例4】(2022·天津·高考真题)化简的值为(

)A.1 B.2 C.4 D.6【答案】B【分析】根据对数的性质可求代数式的值.【详解】原式,故选:B【例5】(2021·江苏·高一专题练习)若实数、、满足,则下列式子正确的是A. B.C. D.【答案】A【分析】由指数式化对数式,然后利用换底公式得出,,,利用对数的运算性质和可得出成立.【详解】由已知,得,得,,,所以,,,而,则,所以,即.故选A.【题型专练】1.(2022湖南·长沙麓山国际实验学校高一开学考试)已知,,,,则下列等式一定成立的是(

)A. B. C. D.【答案】B【分析】根据对数运算法则,以及指对互化,即可判断选项.【详解】,两式相除得,又,所以.故选:B.2.(2022湖北黄石·高一期中)已知,若,则___________.【答案】8【分析】利用指数函数、对数函数的性质、运算法则直接求解.【详解】解:由,且所以是方程的两根,解得或,又,所以,即,又从而,且,则,.所以.故答案为:8.3.(2021·上海高一专题练习)已知,用含的式子表示_________.【答案】【解析】.故答案为:4.(2022·陕西·交大附中模拟预测(理))若,且,则_____________.【答案】【分析】由,可得,,,从而利用换底公式及对数的运算性质即可求解.【详解】解:因为,所以,,,又,所以,所以,所以,故答案为:.5.(2022·全国·高一单元测试)把满足,为整数的叫作“贺数”,则在区间内所有“贺数”的个数是______.【答案】4【分析】利用换底公式计算可得,即可判断.【详解】解:因为,又,,,,,……,所以当,,,时,为整数,所以在区间内“贺数”的个数是.故答案为:6.若均为不等于1的正数,且满足,则.【答案】3【详解】因,所以,因,所以,所以,因为,所以题型五:对数式的应用题【例1】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为的星的亮度为.已知太阳的星等是,天狼星的星等是,则太阳与天狼星的亮度的比值为()A. B. C. D.【答案】A【详解】设太阳的星等为,对应的亮度为,天狼星的星等为,对应的亮度为,则由得,即,所以,所以【例2】(2020•全国Ⅲ)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()()A. B. C. D.【答案】C【详解】由题意知,所以,即,所以,所以,即,所以,所以【例3】(2021•全国甲卷文)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(10A.1.5 B.1.2 C.0.8 D.0.6【答案】C【详解】由题意知,所以,即【例4】(2022·全国·模拟预测)地震震级是根据地震仪记录的地震波振幅来测定的,一般采用里氏震级标准.里氏震级是用距震中100千米处的标准地震仪所记录的地震波的最大振幅的对数值来表示的.里氏震级的计算公式为,其中是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).根据该公式可知,2021年7月28日发生在美国阿拉斯加半岛以南91公里处的级地震的最大振幅约是2021年8月4日发生在日本本州近岸级地震的最大振幅的(

)倍(精确到1).(参考数据:,,)A.794 B.631 C.316 D.251【答案】A【分析】将阿拉斯加半岛的震幅和日本本州近岸5.3级地震的震幅表示成指数形式,作商即可.【详解】由题意,即,则;当时,地震的最大振幅,当时,地震的最大振幅,所以,即;故选:A.【例5】(2022·辽宁·抚顺市第二中学三模)一热水放在常温环境下经过t分钟后的温度T将合公式:,其中是环境温度,为热水的初始温度,h称为半衰期.一杯85℃的热水,放置在25℃的房间中,如果热水降温到55℃,需要10分钟,则一杯100℃的热水放置在25℃的房间中,欲降温到55℃,大约需要多少分钟?(

)()A.11.3 B.13.2 C.15.6 D.17.1【答案】B【分析】依题意求出半衰期,再把的值代入利用换底公式计算,即可求出结果.【详解】解:根据题意,,即,解得,,即,所以,所以;故选:B【题型专练】1.(2022·吉林一中高二阶段练习(理))深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为,其中表示每一轮优化时使用的学习率,表示初始学习率,表示衰减系数,表示训练迭代轮数,表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:)(

)A.128 B.130 C.132 D.134【答案】B【分析】由已知可得,再由,结合指对数关系及对数函数的性质求解即可.【详解】由题设,,则,所以,即,所以所需的训练迭代轮数至少为130次.故选:B2.(2022·内蒙古包头·二模(理))在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为的星的亮度为.已知星的星等是,星的星等是,则星与星的亮度的比值为(

)A. B. C. D.【答案】A【分析】根据题意,运用代入法,结合对数与指数的互化公式进行求解即可.【详解】因为,星的星等是,星的星等是,所以,故选:A3.(2022福建省安溪第一中学高一月考)某种类型的细胞按如下规律分裂:每经过1小时,有约占总数的细胞分裂一次,分裂细胞由1个细胞分裂成2个细胞,现有100个细胞按上述规律分裂,要使细胞总数超过个,需至少经过()(参考数据:,)A.44小时 B.45小时 C.46小时 D.47小时【答案】C【详解】设小时后,细胞总数为,则,令,可得,两边取对数可得,又因,所以4.(2022河北高一期末)地震学家里克特制定了一种表明地震能量大小的尺度,就是使用测振仪衡量地震能量等级,其计算公式,表示里氏震级,是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测振仪距实际震中的距离造成的偏差),计算7.8级地震的最大振幅是4.5级地震的最大振幅的倍数(答案精确到个位,参考数据:,,,)A.1995 B.398 C.89 D.48【答案】A【详解】设7.8级地震的最大振幅是,4.5级地震的最大振幅,依题意得:,,两式相减得则由,又因,所以5.某公司为激励创新,计划逐年加大研发奖金投入。若该公司2015年全年投

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论