版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省开封市仙人庄中学2022-2023学年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.椭圆+=1(a>b>0)的半焦距为c,若直线y=2x与椭圆一个交点的横坐标恰为c,则椭圆的离心率为(
)A. B. C.﹣1 D.﹣1参考答案:D【考点】椭圆的简单性质.【专题】计算题;函数思想;圆锥曲线的定义、性质与方程.【分析】由已知可得:椭圆+=1与直线y=2x交于(c,2c)点,代入可得离心率的值.【解答】解:由已知可得:椭圆+=1与直线y=2x交于(c,2c)点,即+=1,即+=1,即a4﹣6a2c2+c4=0,即1﹣6e2+e4=0,解得:e2=3﹣2,或e2=3+2(舍去),∴e=﹣1,或e=1﹣(舍去),故选:D【点评】本题考查的知识点是椭圆的简单性质,根据已知构造关于a,c的方程,是解答的关键.2.的一个充分条件是(
)A.
B.C.
D.参考答案:D略3.在区间[0,1]上任取两个数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A. B. C. D.参考答案:C【考点】几何概型.【专题】概率与统计.【分析】在区间[0,1]上任取两个数a,b,函数f(x)=x2+ax+b2无零点?x2+ax+b2=0无实数根,a,b∈[0,1]?△=a2﹣4b2<0,a,b∈[0,1].画出可行域,利用几何概率的计算公式即可得出.【解答】解:在区间[0,1]上任取两个数a,b,函数f(x)=x2+ax+b2无零点?x2+ax+b2=0无实数根,a,b∈[0,1]?△=a2﹣4b2<0,a,b∈[0,1].由约束条件,画出可行域:∴函数f(x)=x2+ax+b2无零点的概率P=1﹣=.故选C.【点评】本题考查了线性规划的有关知识、几何概型的计算公式,属于基础题.4.在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是()A.[0,] B.(0,) C.[﹣,] D.(0,]参考答案:A【考点】直线与圆的位置关系.【分析】求出圆的标准方程,根据条件确定圆心C到直线y=kx﹣2的距离d≤R+1=2,利用圆心到直线的距离公式进行求解即可.【解答】解:圆的标准方程为(x﹣4)2+y2=1,则圆心C坐标为(4,0),半径R=1,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则等价为圆心C到直线y=kx﹣2的距离d≤R+1=2,即圆心到直线kx﹣y﹣2=0的距离d=,即|2k﹣1|≤,平方得3k2﹣4k≤0,解得0≤k≤,故选:A5.若复数z满足(z+1)i=2﹣i,则复数z的共轭复数在复平面上所对应点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:B【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【专题】数系的扩充和复数.【分析】由(z+1)i=2﹣i,利用复数代数形式的乘除运算求出z,则z的共轭复数可求,进一步求出复数z的共轭复数在复平面上所对应点的坐标,则答案可求.【解答】解:∵(z+1)i=2﹣i,∴.则.∴复数z的共轭复数在复平面上所对应点的坐标为:(﹣2,2),位于第二象限.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.6.已知{an}为等比数列,,,则()A.7 B.5 C.-5 D.-7参考答案:D【分析】由条件可得的值,进而由和可得解.【详解】或.由等比数列性质可知或故选D.7.已知f(x)是R上的奇函数,且当x>0时f(x)=x(1﹣x),则当x<0时f(x)的解析式是f(x)=()A.﹣x(x﹣1) B.﹣x(x+1) C.x(x﹣1) D.x(x+1)参考答案:D【考点】函数奇偶性的性质.【分析】利用奇函数的性质即可得出.【解答】解:当x<0时,﹣x>0,∵当x>0时f(x)=x(1﹣x),∴f(﹣x)=﹣x(1+x),∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x)=x(1+x),故选:D.8.已知,则A.
B.
C.
D.参考答案:C略9.若直线与直线平行,则实数等于(
) A、 B、 C、 D、参考答案:C略10.下列有关命题的叙述错误的是
()A.若p且q为假命题,则p,q均为假命题B.若是q的必要条件,则p是的充分条件C.命题“≥0”的否定是“<0”D.“x>2”是“”的充分不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.某单位有老年人人,中年人人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法应分别从老年人、中年人、青年人中各抽取
人、
人、
人.参考答案:略12.函数的单调递增区间为__________.参考答案:(-∞,1]【分析】通过换元,找到内外层函数的单调性,根据复合函数单调性的判断方法,得到单调区间.【详解】函数,设t=,函数化为,外层函数是减函数,要求整个函数的增区间,只需要求内层函数的减区间,即t=的减区间,为(-∞,1].故答案为:(-∞,1].【点睛】这个题目考查了复合函数单调区间的求法,满足同增异减的规则,难度中等.13.若执行如图3所示的框图,输入,则输出的数等于
。
参考答案:14.设(i为虚数单位),则
.参考答案:略15.在△ABC中,有等式:①asinA=bsinB;②asinB=bsinA;③acosB=bcosA;④.其中恒成立的等式序号为____________.
参考答案:②、④在△ABC中,有等式:①asinA=bsinB;②asinB=bsinA;③acosB=bcosA;④.其中恒成立的等式序号为②、④.
16.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.参考答案:1617.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则,推广到空间可以得到类似结论;已知正四面体P﹣ABC的内切球体积为V1,外接球体积为V2,则=.参考答案:【考点】类比推理.【分析】平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的外接球和内切球的半径之比是3:1,从而得出正四面体P﹣ABC的内切球体积为V1,外接球体积为V2之比.【解答】解:从平面图形类比空间图形,从二维类比三维,可得如下结论:正四面体的外接球和内切球的半径之比是3:1故正四面体P﹣ABC的内切球体积为V1,外接球体积为V2之比等于==.故答案为:.【点评】主要考查知识点:类比推理,简单几何体和球,是基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上.(Ⅰ)求圆C的方程.(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.参考答案:【考点】直线与圆的位置关系.【分析】(Ⅰ)根据已知设出圆的标准方程,将点A,B的坐标代入标准方程,解方程组即可求出圆心及半径,从而得到圆C的方程.(Ⅱ)根据已知设出直线方程,利用直线与圆相切的性质d=r即可求出直线斜率k,从而求出直线方程.【解答】解:(Ⅰ)∵圆心在直线y=2x上,故可设圆心C(a,2a),半径为r.则圆C的标准方程为(x﹣a)2+(y﹣2a)2=r2.∵圆C经过A(3,2)、B(1,6),∴.解得a=2,r=.∴圆C的标准方程为(x﹣2)2+(y﹣4)2=5.(Ⅱ)由(Ⅰ)知,圆C的圆心为C(2,4),半径r=.直线l经过点P(﹣1,3),①若直线斜率不存在,则直线l:x=﹣1.圆心C(2,4)到直线l的距离为d=3<r=,故直线与圆相交,不符合题意.②若直线斜率存在,设斜率为k,则直线l:y﹣3=k(x+1),即kx﹣y+k+3=0.圆心C(2,4)到直线l的距离为d==.∵直线与圆相切,∴d=r,即=.∴(3k﹣1)2=5+5k2,解得k=2或k=.∴直线l的方程为2x﹣y+5=0或x+2y﹣5=0.19.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.参考答案:(1)见解析;(2).【分析】(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)以菱形对角线交点为原点可建立空间直角坐标系,通过取中点,可证得平面,得到平面的法向量;再通过向量法求得平面的法向量,利用向量夹角公式求得两个法向量夹角的余弦值,进而可求得所求二面角的正弦值.【详解】(1)连接,,分别为,中点
为的中位线且又为中点,且
且
四边形为平行四边形,又平面,平面平面(2)设,由直四棱柱性质可知:平面四边形为菱形
则以为原点,可建立如下图所示的空间直角坐标系:则:,,,D(0,-1,0)取中点,连接,则四边形为菱形且
为等边三角形
又平面,平面
平面,即平面为平面的一个法向量,且设平面的法向量,又,,令,则,
二面角的正弦值为:【点睛】本题考查线面平行关系证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.
20.已知函数,(1)求函数f(x)的极值;(2)若对?x∈[﹣2,3],都有s≥f(x)恒成立,求出s的范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)利用导数求函数的极值即可;(2)由题意可得只要s≥f(x)max即可,利用导数求得函数f(x)的最大值即可;【解答】解:(1)f′(x)=x2﹣x﹣2=(x﹣2)(x+1)=0,解得x=2或x=﹣1,
x(﹣∞,﹣1)﹣1(﹣1,2)
2(2,+∞)f′(x)+
0﹣
0+
f(x)
递增
递减﹣
递增因此极大值是,极小值是﹣.(2)f(﹣2)=,f(3)=﹣,因此在区间[﹣2,3]的最大值是,最小值是﹣,∴s≥.21.(本小题满分14分)已知函数
,为的导数.(1)当时,证明在区间上不是单调函数;(2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.参考答案:解:(1)当时,x,,其对标轴为.当时,是单调增函数,又,在上,由,得;在上<0,为减函数;在上>0,为增函数.由上得出在上,不是单调函数.
………………6分(2)在上是增函数,故对于,.
………6分设.,由,得.
…8分要使对于任意的,存在使得成立,只需在上,-,
…………9分在上;在上,所以时,有极小值.又,因为在上只有一个极小值,故的最小值为.
解得.
………………14分22.在多面体ABCDEFG中,四边形ABCD与CDEF是边长均为a的正方形,CF⊥平面ABCD,BG⊥平面ABCD,H是BC上一点,且AB=2BG=4BH(1)求证:平面AGH⊥平面EFG(2)若a=4,求三棱锥G﹣ADE的体积.参考答案:【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直的判定.【分析】(1)利用勾股定理逆定理证明GH⊥FG,根据CD⊥平面BCFG,CD∥EF得EF⊥GH,故而GH⊥平面EFG,于是平面AGH⊥平面EFG;(2)根据GB∥CF∥DE得出BG∥平面ADE,故VG﹣ADE=VB﹣ADE=VE﹣ABD=VF﹣ABD.【解答】证明:(1)连接FH,∵CD⊥BC,CD⊥CF,∴CD⊥平面BCFG.又∵GH?平面BCFG,∴CD⊥GH.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医疗医院医疗废物检测合同
- 2025年社交网络平台安全监管项目可行性研究报告
- 2025年高端定制家具生产企业项目可行性研究报告
- 2025年多功能文化活动中心建设项目可行性研究报告
- 2025年社交网络数据分析平台项目可行性研究报告
- 2025年新能源车基础设施升级项目可行性研究报告
- 中俄导航协议书
- 网贷中介合同范本
- 停工结算协议书
- 云计算环境下的渗透测试工程师面试要点
- 《医学影像诊断报告书写指南》(2025版)
- 高校物业安全培训内容课件
- (正式版)DB33∕T 1430-2025 《海塘安全监测技术规程》
- 医药竞聘地区经理汇报
- 水库调度操作规程模板
- 产科护士长年终总结
- 酒店情况诊断报告
- 2025年夏季山东高中学业水平合格考地理试卷试题(含答案)
- DBJ04-T483-2025 海绵型城市道路与广场设计标准
- 农药运输储存管理制度
- TD/T 1036-2013土地复垦质量控制标准
评论
0/150
提交评论