版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023届北京市西城区高三一模数学试题一、单选题1.已知集合,,则(
)A. B.C. D.【答案】B【分析】首先对集合化简,再由交集得定义即可求得.【详解】,由得故选:B2.下列函数中,在区间上为增函数的是(
)A. B.C. D.【答案】D【分析】利用基本初等函数的单调性逐项判断各选项中函数在区间上的单调性,可得出合适的选项.【详解】对于A选项,当时,,则在上单调递减;对于B选项,函数在区间上不单调;对于C选项,函数在上不单调;对于D选项,因为函数、在上均为增函数,所以,函数在上为增函数.故选:D.3.设,,,则(
)A. B.C. D.【答案】C【分析】分别利用指数函数、对数函数、三角函数单调性,限定的取值范围即可得出结论.【详解】根据对数函数在定义域内为单调递增可知,即;由三角函数单调性可知;利用指数函数为单调递增可得;所以.故选:C4.在的展开式中,的系数为(
)A. B.C. D.【答案】A【分析】利用二项式定理的性质.【详解】设的通项,则,化简得,令,则的系数为,即A正确.故选:A5.已知为所在平面内一点,,则(
)A. B.C. D.【答案】A【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则,故选:A.6.函数是(
)A.奇函数,且最小值为 B.奇函数,且最大值为C.偶函数,且最小值为 D.偶函数,且最大值为【答案】C【分析】根据题意可知定义域关于原点对称,再利用同角三角函数之间的基本关系化简可得,由三角函数值域即可得,即可得出结果.【详解】由题可知,的定义域为,关于原点对称,且,而,即函数为偶函数;所以,又,即,可得函数最小值为0,无最大值.故选:C7.已知双曲线的中心在原点,以坐标轴为对称轴.则“的离心率为”是“的一条渐近线为”的(
)A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】D【分析】根据题意,分别从充分性和必要性两方面进行检验即可求解.【详解】若双曲线的离心率为,则,所以,若双曲线的焦点在轴上,则渐近线方程为;若双曲线的焦点在轴上,则渐近线方程为;所以“的离心率为”不是“的一条渐近线为”的充分条件;反之,双曲线的一条渐近线为,若双曲线的焦点在轴上,则渐近线方程为,所以,离心率;若双曲线的焦点在轴上,则渐近线方程为,所以,离心率;所以“的离心率为”不是“的一条渐近线为”的必要条件;综上:“的离心率为”是“的一条渐近线为”的既不充分也不必要条件,故选:D.8.在不考虑空气阻力的条件下,火箭的最大速度和燃料的质量以及火箭(除燃料外)的质量间的关系为.若火箭的最大速度为,则下列各数中与最接近的是(
)(参考数据:)A. B.C. D.【答案】B【分析】根据所给关系式,求出,近似计算得解.【详解】由题意,火箭的最大速度为时,可得,即,因为,所以近似计算可得,故选:B9.设,函数若恰有一个零点,则的取值范围是(
)A. B.C. D.【答案】D【分析】根据题意利用函数与方程的思想,可将图象平移对参数进行分类讨论即可得出其取值范围.【详解】画出函数的图象如下图所示:函数可由分段平移得到,易知当时,函数恰有一个零点,满足题意;当时,代表图象往上平移,显然没有零点,不符合题意;当时,图象往下平移,当时,函数有两个零点;当时,恰有一个零点,满足题意,即;综上可得的取值范围是.故选:D10.名学生参加某次测试,测试由道题组成.若一道题至少有名学生未解出来,则称此题为难题;若一名学生至少解出了道题,则该生本次测试成绩合格.如果这次测试至少有名学生成绩合格,且测试中至少有道题为难题,那么的最小值为(
)A. B.C. D.【答案】B【分析】由题意可得学生人数和题目数必须是3的倍数,可从进行讨论即可得出的最小值为9.【详解】根据题意可知,不妨设,所以,若求的最小值,只需最小即可;易知当时,即;此时即有3名学生不妨设为甲、乙、丙;3道题目设为;根据题意可得至少有2名学生成绩合格,这两名学生至少做出了4道题,可设甲同学做出了两道题,乙同学做出了两道题,丙同学做出了0道题,此时合格的学生为甲乙,即有名学生成绩合格,三道题目中有两道题,有名学生未解出来,即满足测试中有道题为难题;所以符合题意.故选:B二、填空题11.复数,则__________________.【答案】【分析】利用复数的除法法则化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故答案为:.12.已知抛物线的顶点为,且过点.若是边长为的等边三角形,则____.【答案】1【分析】根据抛物线的对称性以及等边三角形的边角关系即可代入求解.【详解】设,则,即,所以,由于又,所以,因此,故关于轴对称,由得,将代入抛物线中得所以,故答案为:1三、双空题13.已知数列的通项公式为,的通项公式为.记数列的前项和为,则____;的最小值为____.【答案】
【分析】(1)由题可得,根据等比数列及等差数列的求和公式可得,利用数学归纳法可得时,,时,,进而即得.【详解】由题可知,所以,,令,则,当时,,即,下面用数学归纳法证明当时,成立,假设时,成立,当时,,即时也成立,所以时,,即,所以时,,时,,由当时,有最小值,最小值为.故答案为:;.14.设,其中.当时,____;当时,的一个取值为____.【答案】
(答案不唯一)【分析】将代入计算可得,利用两点间距离公式可知;由即可得,化简整理可得,即可写出一个合适的值.【详解】根据题意可得当时,可得,所以;当时,即,整理可得,即,可得,所以的一个取值为.故答案为:,四、填空题15.如图,在棱长为的正方体中,点,分别在线段和上.给出下列四个结论:
①的最小值为;②四面体的体积为;③有且仅有一条直线与垂直;④存在点,,使为等边三角形.其中所有正确结论的序号是____.【答案】①②④【分析】对于①,利用直线之间的距离即可求解;对于②,以为顶点,为底面即可求解;对于③,利用直线的垂直关系即可判断;对于④,利用空间坐标即可求解.【详解】对于①,由于在上运动,在上运动,所以的最小值就是两条直线之间距离,而,所以的最小值为;对于②,,而,所以四面体的体积为;对于③,由题意可知,当与重合,与重合时,,又根据正方体性质可知,,所以当为中点,与重合时,此时,故与垂直的不唯一,③错误;对于④,当为等边三角形时,,则此时.所以只需要与的夹角能等于即可.以为原点,、、分别为轴、轴、轴建立空间直角坐标系,如下图,设,则由题意可得,,,则可得,,则,整理可得,该方程看成关于的二次函数,,所以存在使得为等边三角形.故答案为:①②④五、解答题16.如图,在中,,,平分交于点,.(1)求的值;(2)求的面积.【答案】(1)(2)【分析】(1)在中,利用正弦定理即可得解;(2)由(1)可求出,再根据平分可得为等腰三角形,再根据三角形的面积公式即可得解.【详解】(1)在中,由正弦定理得,所以,因为,所以;(2)由(1)得,由题设,,即为等腰三角形,所以,,所以的面积.17.根据《国家学生体质健康标准》,高三男生和女生立定跳远单项等级如下(单位:cm):立定跳远单项等级高三男生高三女生优秀及以上及以上良好~~及格~~不及格及以下及以下从某校高三男生和女生中各随机抽取名同学,将其立定跳远测试成绩整理如下(精确到):男生女生假设用频率估计概率,且每个同学的测试成绩相互独立.(1)分别估计该校高三男生和女生立定跳远单项的优秀率;(2)从该校全体高三男生中随机抽取人,全体高三女生中随机抽取人,设为这人中立定跳远单项等级为优秀的人数,估计的数学期望;(3)从该校全体高三女生中随机抽取人,设“这人的立定跳远单项既有优秀,又有其它等级”为事件,“这人的立定跳远单项至多有个是优秀”为事件.判断与是否相互独立.(结论不要求证明)【答案】(1)(2)(3)与相互独立【分析】(1)样本中立定跳远单项等级获得优秀的男生人数为,获得优秀的女生人数为,计算频率得到优秀率的估计值;(2)由题设,的所有可能取值为.算出对应概率的估计值,得到的数学期望的估计值;(3)利用两个事件相互独立的定义判断即可.【详解】(1)样本中立定跳远单项等级获得优秀的男生人数为,获得优秀的女生人数为,所以估计该校高三男生立定跳远单项的优秀率为;估计高三女生立定跳远单项的优秀率为.(2)由题设,的所有可能取值为.估计为;估计为;估计为;估计为.估计的数学期望.(3)估计为;估计为;估计为,,所以与相互独立.18.如图,在四棱锥中,平面,,,,.为棱上一点,平面与棱交于点.再从条件①、条件②这两个条件中选择一个作为己知,完成下列两个问题(1)求证:为的中点;(2)求二面角的余弦值.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)【分析】(1)若选条件①,利用线面平行判定定理和性质定理即可得出四边形为平行四边形,又即可得为的中位线即可得出证明;若选条件②,利用勾股定理可得为的中点,再利用线面平行判定定理和性质定理即可得,即可得出证明;(2)建立以为坐标原点的空间直角坐标系,求出平面的法向量为,易知是平面的一个法向量,根据空间向量夹角与二面角之间的关系即可求得结果.【详解】(1)选条件①:因为,平面,平面,所以平面因为平面平面,所以又,所以四边形为平行四边形.所以且.
因为且,所以且.所以为的中位线.
所以为的中点.选条件②:.因为平面,平面,所以.在中,.
在直角梯形中,由,,可求得,所以.因为,所以为的中点.
因为,平面,平面,所以平面.因为平面平面,所以.
所以,所以为的中点;(2)由题可知因为平面,所以.又,所以两两相互垂直.如图建立空间直角坐标系,
则,,,,,.所以,,.设平面的法向量为,则,即令,则,.于是.
因为平面,且,所以平面,又平面,所以.又,且为的中点,所以.平面,所以平面,所以是平面的一个法向量.
.
由题设,二面角的平面角为锐角,所以二面角的余弦值为.19.已知函数.(1)求曲线在点处的切线方程;(2)设,证明:在上单调递增;(3)判断与的大小关系,并加以证明.【答案】(1)(2)证明见解析(3),证明见解析【分析】(1)求导得切点处的斜率,即可求解直线方程,(2)求导,利用导数的正负即可确定函数的单调性,(3)构造函数,利用导数确定单调性,结合(2)的结论即可求解.【详解】(1),所以,.
所以曲线在点处的切线方程为.(2)由题设,.所以.
当时,因为,所以.
所以在上单调递增.(3).证明如下:
设.
则.
由(2)知在上单调递增,所以.
所以,即在上单调递增.
所以,即.20.已知椭圆,点在椭圆上,且(为原点).设的中点为,射线交椭圆于点.(1)当直线与轴垂直时,求直线的方程;(2)求的取值范围.【答案】(1)(2)【分析】(1)根据题意可知点关于轴对称且,利用勾股定理可得直线的方程为;(2)当直线的斜率不存在时,,直线的斜率存在时,联立直线和椭圆方程再根据可得,即,再由求出点,代入椭圆方程即可得,即可求得的取值范围为【详解】(1)当直线与轴垂直时,设其方程为.
由点关于轴对称,且,由勾股定理可知不妨设,
将点的坐标代入椭圆的方程,得,解得.所以直线的方程为.(2)当直线的斜率不存在时,由(Ⅰ)知.
当直线的斜率存在时,设其方程为.由
得.由,得.设,,则,.
因为,所以.所以.整理得.
所以.解得,从而.
设,其中.则.
将代入椭圆的方程,得.所以,即.
因为,所以,即.
综上的取值范围是.21.给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.(1)判断集合是否具有性质?说明理由;(2)判断是否存在具有性质的集合,并加以证明;(3)若集合具有性质,证明:.【答案】(1)具有,理由见解析(2)不存在,证明见解析(3)证明见解析【分析】(1)根据集合具有性质的特征,即可根据集合中的元素进行检验求解,(2)假设集合具有性质,分别考虑时,集合中的元素,即可根据的定义求解.(3)根据假设存在使得,考虑当时以及时,分量为1的个数即可讨论求解.【详解】(1)因为,同理.又,同理.所以集合具有性质.(2)当时,集合中的元素个数为.由题设.
假设集合具有性质,则①当时,,矛盾.②当时,,不具有性质,矛盾.③当时,.因为和至多一个在中;和至多一个在中;和至多一个在中,故集合中的元素个数小于,矛盾.④当时,,不具有性质,矛盾.⑤当时,,矛盾.综上,不存在具有性质的集合.(3)记,则.若,则,矛盾.若,则,矛盾.故.假设存在使得,不妨设,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 31909-2015 可渗透性烧结金属材料 透气度的测定》专题研究报告
- 《GBT 31897.1-2015 灯具性能 第 1 部分:一般要求》专题研究报告
- 《GB-T 16134-2011中小学生健康检查表规范》专题研究报告
- 《GBT 31946-2015 水电站压力钢管用钢板》专题研究报告
- 《AQ 6208-2007煤矿用固定式甲烷断电仪》专题研究报告
- 2026年四川财经职业学院单招职业适应性考试题库及答案详解1套
- 设备租赁还款连带责任担保合同
- 置业顾问岗位招聘考试试卷及答案
- 竹编工艺师岗位招聘考试试卷及答案
- 2025年保健科慢性病患者康复指导与生活方式干预考核试题及答案
- 2025秋期版国开电大本科《心理学》一平台形成性考核练习1至6在线形考试题及答案
- MOOC 英语影视欣赏-苏州大学 中国大学慕课答案
- 校园火灾发生时教师如何迅速报警并组织疏散
- 护理人员配置原则与标准
- 血尿病人的护理
- 阿尔及利亚医疗器械法规要求综述
- 为深度学习而教:促进学生参与意义建构的思维工具
- 跨境人民币业务
- 交城县惠丰生物科技有限公司年产10000吨N,N-二甲基苯胺项目环境影响报告书
- 管理运筹学(第三版) 韩伯棠课件第十一章
- GB/T 17215.302-2013交流电测量设备特殊要求第2部分:静止式谐波有功电能表
评论
0/150
提交评论