江苏省南京市宁海五十中学2022-2023学年数学八年级第二学期期末质量检测试题含解析_第1页
江苏省南京市宁海五十中学2022-2023学年数学八年级第二学期期末质量检测试题含解析_第2页
江苏省南京市宁海五十中学2022-2023学年数学八年级第二学期期末质量检测试题含解析_第3页
江苏省南京市宁海五十中学2022-2023学年数学八年级第二学期期末质量检测试题含解析_第4页
江苏省南京市宁海五十中学2022-2023学年数学八年级第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列数字图形中,是中心对称图形,但不是轴对称图形的为()A. B. C. D.2.小红随机写了一串数“”,数字“”出现的频数是()A.4 B.5 C.6 D.73.若关于x的方程x2+6x-a=0无实数根,则a的值可以是下列选项中的()A.-10 B.-9 C.9 D.104.如果一次函数y=kx+b(k、b是常数)的图象不经过第二象限,那么k、b应满足的条件是()A.k>0,且b≤0 B.k<0,且b>0 C.k>0,且b≥0 D.k<0,且b<05.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法判断6.如图,四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,连接BE交AD、AC分别于F、N,CM平分∠ACB交BN于M,下列结论:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有()A.1个 B.2个C.3个 D.4个7.下列选项中的计算,正确的是(

)A.9=±3 B.23-3=2 C.-52=-5 D.8.定义新运算“”如下:当时,;当时,,若,则的取值范围是()A.或 B.或C.或 D.或9.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.610.已知在一个样本中,41个数据分别落在4个组内,第一、二、四组数据个数分别为5、12、8,则第三组的频数为()A.1.375 B.1.6 C.15 D.2511.某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是()A.正方形 B.正六边形 C.正八边形 D.正十二边形12.故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是()A.①② B.①③ C.①④ D.②③二、填空题(每题4分,共24分)13.若把代数式化为的形式,其中、为常数,则______.14.如图,在中,,,以点为圆心,以任意长为半径作弧,分别交、于点、,再分别以点、为圆心,以大于的长为半径作弧,两弧在内交于点,连结并延长,交于点,则的长为____.15.如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.16.如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.17.如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.18.若最简二次根式和是同类二次根式,则______.三、解答题(共78分)19.(8分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).(1)求一次函数与反比例函数的解析式;(2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?20.(8分)如图,在△ABC中,AC⊥BC,AC=BC,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:△ACE≌△BCF.(2)求证:BF=2AD,(3)若CE=2,求AC的长.21.(8分)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)22.(10分)如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆.(1)请你设计一种围法(篱笆必须用完),使矩形花园的面积为米.(2)如何设计可以使得围成的矩形面积最大?最大面积是多少?23.(10分)关于x的方程ax2+bx+c=0(a0).(1)已知a,c异号,试说明此方程根的情况.(2)若该方程的根是x1=-1,x2=3,试求方程a(x+2)2+bx+2b+c=0的根.24.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴上,C在x轴上,把矩形OABC沿对角线AC所在的直线翻折,点B恰好落在反比例函数的图象上的点处,与y轴交于点D,已知,.求的度数;求反比例函数的函数表达式;若Q是反比例函数图象上的一点,在坐标轴上是否存在点P,使以P,Q,C,D为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.25.(12分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.26.阅读可以增进人们的知识也能陶治人们的情操。我们要多阅读,多阅读有营养的书。因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,整理后的数据如下表(表中信息不完整)。图1和图2是根据整理后的数据绘制的两幅不完整的统计图.阅读时间分组统计表组别阅读时间x(h)人数AaB100CbD140Ec请结合以上信息解答下列问题(1)求a,b,c的值;(2)补全图1所对应的统计图;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据轴对称图形和中心对称图形的概念对各选项分析判断即可;【详解】A选项中,是中心对称图形但不是轴对称图形,故本选项正确;B选项中,是中心对称图形,也是轴对称图形,故本选项错误;C选项中,是中心对称图形,也是轴对称图形,故本选项错误;D选项中,不是中心对称图形,也不是轴对称图形,故本选项错误;【点睛】本题主要考查了轴对称图形和中心对称图形的概念,掌握轴对称图形和中心对称图形的概念是解题的关键.2、D【解析】

根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.【详解】∵一串数“”中,数字“3”出现了1次,∴数字“3”出现的频数为1.故选D.【点睛】此题考查频数与频率,解题关键在于掌握其概念3、A【解析】

二次方程无实数根,Δ<0,据此列不等式,解不等式,在解集中取数即可.【详解】解:根据题意得:Δ=36+4a<0,得a<-9.故答案为:A【点睛】本题考查了一元二次方程的根,Δ>0,有两个实数根,Δ=0,有两个相等的实数根,Δ<0,无实数根,根据Δ的取值判断一元二次方程根的情况是解题的关键.4、A【解析】分析:由一次函数图象不经过第二象限可得出该函数图象经过第一、三象限或第一、三、四象限,再利用一次函数图象与系数的关系,即可找出结论.详解:∵一次函数y=kx+b(k、b是常数)的图象不经过第二象限,∴一次函数y=kx+b(k、b是常数)的图象经过第一、三象限或第一、三、四象限,当一次函数y=kx+b(k、b是常数)的图象经过第一、三象限时,k>0,b=0;当一次函数y=kx+b(k、b是常数)的图象经过第一、三、四象限时,k>0,b<0.综上所述:k>0,b⩽0.故选A.点睛:本题考查了一次函数图象与系数的关系,分一次函数图象过一、三象限和一、三、四象限两种情况进行分析.5、B【解析】试题分析:已知点P(a,c)在第二象限,可得a<0,c>0,所以ac<0,即可判定△=b2﹣4ac>0,所以方程有两个不相等的实数根.故选B.考点:根的判别式;点的坐标.6、B【解析】

连接DE,由∠ABC=∠AEC=∠ADC=90°,根据圆周角定理的推论得到点A、B、C、D、E都在以AC为直径的圆上,再利用矩形的性质可得AE=ME,即①正确;再根据圆周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易证△AEF≌△CED,即可得到AB=AF,即②正确;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,即③正确;根据等腰三角形性质求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判断(4).【详解】连接DE.∵四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,∴点A.B.C.D.E都在以AC为直径的圆上,∵AB=CD,∴弧AB=弧CD,∴∠AEB=∠CED,∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,∴BE⊥ED,故(1)正确;∵点A.B.C.D.E都在以AC为直径的圆上,∴∠AEF=∠CED,∠EAF=∠ECD,又∵△ACE为等腰直角三角形,∴AE=CE,在△AEF和∉CED中,∠AEF=∠CEDAE=CD∠EAF=∠ECD∴△AEF≌△CED,∴AF=CD,而CD=AB,∴AB=AF,即(2)正确;∴∠ABF=∠AFB=45°,∴∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,∵CM平分∠ACB交BN于M,∴∠EMC=∠ECM,∴EC=EM,∴EM=EA,即(3)正确;∵AB=AF,∠BAD=90°,EM=EA,∴∠ABF=∠CBF=45°,∠EAM=∠AME,∵△AEC是等腰直角三角形,∴∠EAC=45°,∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,∴∠BAM=∠NAM,∴(4)正确;故选D.【点睛】此题考查等腰三角形的判定与性质,圆周角定理,等腰直角三角形,解题关键在于作辅助线7、D【解析】

根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减,把同类二次根式的系数相加减,做为结果的系数,根号及根号内部都不变.【详解】解:A、9=3B、23C、(-5)2D、34故答案为:D【点睛】本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.8、D【解析】

分3>x+2和3<x+2两种情况,根据新定义列出不等式求解可得.【详解】当3>x+2,即x<1时,3(x+2)+x+2>0,

解得:x>-2,

∴-2<x<1;

当3<x+2,即x>1时,3(x+2)-(x+2)>0,

解得:x>-2,

∴x>1,

综上,-2<x<1或x>1,

故选:D.【点睛】考查解一元一次不等式组的能力,根据新定义分类讨论并列出关于x的不等式是解题的关键.9、C【解析】试题解析:设多边形有n条边,由题意得:110°(n-2)=360°×3,解得:n=1.故选:C.10、C【解析】

解:第三组的频数=41-5-12-8=15故选:C.【点睛】本题考查频数,掌握概念是解题关键.11、C【解析】

根据密铺的条件得,两多边形内角和必须凑出,进而判断即可.【详解】解:、正方形的每个内角是,,能密铺;、正六边形每个内角是,,能密铺;、正八边形每个内角是,与无论怎样也不能组成的角,不能密铺;、正十二边形每个内角是,,能密铺.故选:C.【点睛】本题考查两种正多边形的镶嵌应符合多个内角度数和等于.12、C【解析】

根据各结论所给两个点的坐标得出原点的位置及单位长度从而得到答案.【详解】①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5),正确;②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,2.5),错误;③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,2),错误;④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6),正确,故选:C.【点睛】此题考查平面直角坐标系中用点坐标确定具体位置,由给定的点坐标确定原点及单位长度是解题的关键.二、填空题(每题4分,共24分)13、-7【解析】

利用配方法把变形为(x-2)-9,则可得到m和k的值,然后计算m+k的值.【详解】x−4x−5=x−4x+4−4−5=(x−2)−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.14、1.【解析】

根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,【详解】解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=1;故答案为:1.【点睛】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.15、1【解析】

取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.【详解】如图,取AD的中点E,连接OE,CE,OC,∵∠AOD=10°,∴Rt△AOD中,OE=AD=4,又∵∠ADC=10°,AB=CD=3,DE=4,∴Rt△CDE中,CE==5,又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),∴OC的最大值为1,即点C到原点O距离的最大值是1,故答案为:1.【点睛】此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.16、2.4【解析】

连接BD,可证EF=BD,即将求EF最小值转化为求BD的最小值,根据“垂线段最短”可知时,BD取最小值,依据直角三角形面积求出BD即可.【详解】解:连接BD四边形BEDF是矩形当时,BD取最小值,在中,,,根据勾股定理得AC=5,所以EF的最小值等于BD的最小值为2.4.故答案为2.4【点睛】本题主要考查了利用“垂线段最短”求线段的最小值,准确作出辅助线将求EF最小值转化为求BD最小值是解题的关键.求线段的最小值常用的理论依据为“两点之间线段最短”、“垂线段最短”.17、(8,0)【解析】

连接任意两对对应点,看连线的交点为那一点即为位似中心.【详解】解:连接BB1,A1A,易得交点为(8,0).故答案为:(8,0).【点睛】用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.18、4【解析】

根据被开方数相同列式计算即可.【详解】∵最简二次根式和是同类二次根式,∴a-1=11-2a,∴a=4.故答案为:4.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.三、解答题(共78分)19、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【解析】

(1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;(2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.【详解】(1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),∴,解得k=1,b=1∴一次函数解析式为y=x+1;∵点A(1,2)在反比例函数y=的图象上,∴m=1×2=2,∴反比例函数解析式为y=;(2)∵方程组的解为或,∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.20、(1)证明见解析;(2)证明见解析;(3)2+2.【解析】

(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE;(2)由(1)得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(3)由(1)知△BCF≌△ACE,推出CF=CE=2,在Rt△CEF中,EF=CE2+CF2=2,由于BD⊥AE【详解】(1)∵AC⊥BC,BD⊥AE∴∠FCB=∠BDA=90°∠CBF+∠CFB=90°,∠DAF+∠AFD=90°∵∠CFB=∠AFD∴∠CBF=∠CAE∵AC=BC∴△ACE≌△BCF(2)由(1)知△ACE≌△BCF得AE=BF∵BE=BA,BD⊥AE∴AD=ED,即AE=2AD∴BF=2AD(3)由(1)知△ACE≌△BCF∴CF=CE=2∴在Rt△CEF中,EF=CE2∵BD⊥AE,AD=ED,∴AF=FE=2,∴AC=AF+CF=2+2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,熟练掌握全等三角形的判定和性质定理是解题的关键.21、(1)EF=BE;(2)EF=BE,理由见解析;(3)当B,E,F在一条直线上时,∠CBE=22.5°【解析】

(1)证明△ECF是等腰直角三角形即可;

(2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明BE=DE,△DEF是等腰直角三角形即可;

(3)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明∠CBF=∠CFB即可.【详解】解:(1)如图1中,结论:EF=BE.

理由:

∵四边形ABCD是正方形,

∴BA=BC,∠ABC=∠BCD=90°,∠ACD=∠ACB=45°,

∵AE=EC,

∴BE=AE=EC,

∵CM平分∠DCG,

∴∠DCF=45°,

∴∠ECF=90°,

∵CF=AE,

∴EC=CF,

∴EF=EC,

∴EF=BE.(2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.

理由:连接ED,DF.

由正方形的对称性可知,BE=DE,∠CBE=∠CDE

∵正方形ABCD,

∴AB=CD,∠BAC=45°,

∵点F是正方形ABCD外角平分线CM上一点,

∴∠DCF=45°,

∴∠BAC=∠DCF,

由∵CF=AE,

∴△ABE≌△CDF(SAS),

∴BE=DF,∠ABE=∠CDF,

∴DE=DF,

又∵∠ABE+∠CBE=90°,

∴∠CDF+∠CDE=90°,

即∠EDF=90°,

∴△EDF是等腰直角三角形

∴EF=DE,

∴EF=DE.(3)如图3中,当点B,E,F在一条直线上时,∠图形如图2所示:(1)中的结论仍然成立,即EF=BE.CBE=22.5°.

理由:∵∠ECF=∠EDF=90°,

∴E,C,F,D四点共圆,

∴∠BFC=∠CDE,

∵∠ABE=∠ADE,∠ABC=∠ADC=90°,

∴∠CDE=∠CBE,

∴∠CBF=∠CFB,

∵∠FCG=∠CBF+∠CFB=45°,

∴∠CBE=22.5°.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题.22、见详解.【解析】

(1)设AB为xm,则BC为(40-2x)m,根据题意可得等量关系:矩形的面积=长×宽=150,根据等量关系列出方程,再解即可;

(2)根据题意和图形可以得到S与x之间的函数关系,将函数关系式化为顶点式,即可解答本题.【详解】解:(1)设AB为xm,则BC为(40-2x)m,根据题意可得:X(40-2x)=150解得:x1=,x2=15.:当x=时,40-2x=30>25.故不满足题意,应舍去.②当x=15时,40-2x=10<25,故当x=15时,满足实际要求.∴当x=15时,使矩形花园的面积为米.(2)设矩形的面积为S,则依意得:S=X(40-2x)=-2x2+40x=-2(x-5)2+50∴当x=5,时S有最大值.最大值为50.【点睛】本题考查了二次函数的实际应用,正理解题意找到等量关系列出方程是解题的关键.23、(1)见解析;(2)x=-3或x=1【解析】

(1)用一元二次的根判别式判断即可;(2)观察得出a(x+2)2+bx+2b+c=0的解是原方程的解加2,从而解出方程【详解】(1)∵△=b2﹣4ac,当a、c异号时,即ac<0,∴△=b2﹣4ac>0,∴该方程必有两个不相等的实数根;(2)∵ax2+bx+c=0两根分别为x1=-1,x2=3,∴方程a(x+2)2+bx+2b+c=a(x+2)2+b(x+2)+c=0中的x+2=-1或x+2=3解得x=-3或x=1【点睛】熟练掌握一元二次方程根的判别式是解决本题的关键,(2)通过两根不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论