




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.与最接近的整数是()A.5 B.1 C.1.5 D.72.正六边形的外角和为()A.180° B.360° C.540° D.720°3.如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C的度数等于()A.100° B.105° C.115° D.120°4.下列事件中,属于随机事件的是().A.凸多边形的内角和为B.凸多边形的外角和为C.四边形绕它的对角线交点旋转能与它本身重合D.任何一个三角形的中位线都平行于这个三角形的第三边5.把一张对边互相平行的纸条,折成如图所示,是折痕,若,则下列结论正确的有是()(1);(2);(3);(4).A.1个 B.2个 C.3个 D.4个6.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30° B.30°或45° C.45°或60° D.30°或60°7.下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm28.分式有意义的条件是()A. B. C. D.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm10.如图,平行四边形ABCD的对角线AC、BD相交于点O,已知AD=5,BD=8,AC=6,则△OBC的面积为()A.5 B.6 C.8 D.1211.在平面直角坐标系中,已知点在第四象限,且点到轴的距离是4,到轴的距离是3,那么点的坐标为()A. B. C. D.12.函数y=3x+k-2的图象不经过第二象限,则k的取值范围是()A.k≤2 B.k≤-2 C.k>2 D.k<2二、填空题(每题4分,共24分)13.如图,在中,是的角平分线,,垂足为E,,则的周长为________.14.如图,在中,,点、、分别为、、的中点.若,则的长为_____________.15.已知:,则_______.16.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.17.已知x=,,则x2+2xy+y2的值为_____.18.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.三、解答题(共78分)19.(8分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.20.(8分)如图,在ΔABC中,AB=BC,∠A=2α,点D是BC边的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=________(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°-2α,与AC边交于点N.根据条件补全图形,并写出DM与DN21.(8分)一个边数为的多边形中所有对角线的条数是边数为的多边形中所有对角线条数的6倍,求这两个多边形的边数.22.(10分)化简或求值(1)(1+)÷(2)1﹣÷,其中a=﹣,b=1.23.(10分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,且与直线交于.(1)求出点的坐标(2)当时,直接写出x的取值范围.(3)点在x轴上,当△的周长最短时,求此时点D的坐标(4)在平面内是否存在点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由.24.(10分)如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为.25.(12分)如图,在平面直角坐标系中,直线:经过,分别交轴、直线、轴于点、、,已知.(1)求直线的解析式;(2)直线分别交直线于点、交直线于点,若点在点的右边,说明满足的条件.26.关于的一元二次方程为(1)求证:无论为何实数,方程总有实数根;(2)为何整数时,此方程的两个根都为正数.
参考答案一、选择题(每题4分,共48分)1、B【解析】
由题意可知31与37最接近,即与最接近,从而得出答案.【详解】解:∵31<37<49,∴1<<7,∵37与31最接近,∴与最接近的整数是1.故选:B.【点睛】此题主要考查了无理数的估算能力,掌握估算的方法是解题的关键.2、B【解析】
由多边形的外角和等于360°,即可求得六边形的外角和.【详解】解:∵多边形的外角和等于360°,
∴六边形的外角和为360°.
故选:B.【点睛】此题考查了多边形的内角和与外角和的知识.解题时注意:多边形的外角和等于360度.3、B【解析】分析:根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数即可.详解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.故选B.点睛:本题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题的关键.4、C【解析】
随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:、凸n多边形的内角和,故不可能为,所以凸多边形的内角和为是不可能事件;、所有凸多边形外角和为,故凸多边形的外角和为是必然事件;、四边形中,平行四边形绕它的对角线交点旋转能与它本身重合,故四边形绕它的对角线交点旋转能与它本身重合是随机事件;、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【解析】
利用平行线的性质,折叠的性质依次判断.【详解】∵A∥B,∴∠EF=,故(1)正确;由翻折得到∠GEF=,∴∠GE=64°,∴∠AEC=180°-∠GE=116°,故(2)错误;∵A∥B,∴∠BGE=∠GE=64°,故(3)正确;∵EC∥FD∴∠BFD=∠BGC=180°-∠BGE=116°,故(4)正确,正确的有3个,故选:C.【点睛】此题考查平行线的性质,翻折的性质,熟记性质定理并熟练运用是解题的关键.6、D【解析】试题分析:∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°﹣∠BAD=180°﹣120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与折痕所成的角a的度数应为30°或60°.考点:剪纸问题7、D【解析】
根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.【详解】根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F的面积之和为3个G的面积.∵M的面积是61=36cm1,∴A、B、C、D、E、F的面积之和为36×3=108cm1.故选D.【点睛】考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.8、B【解析】
根据分式的定义即可判断.【详解】依题意得0,解得,故选B.【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.9、C【解析】
根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【点睛】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.10、B【解析】
由平行四边形的性质得出BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,再由勾股定理逆定理证得△OBC是直角三角形,继而由直角三角形面积公式即可求出ΔOBC的面积.【详解】解:∵四边形ABCD是平行四边形,AD=5,BD=8,AC=6,∴BC=AD=5,OA=OC=AC=3,OB=OD=BD=4,∵∴△OBC是直角三角形,∴.故选:B.【点睛】本题主要考查了平行四边形的性质和勾股定理逆定理,平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分,解题的关键是证明△OBC是直角三角形.11、D【解析】
根据各象限内点的坐标特征解答即可.【详解】解:因为点在第四象限,且点到轴的距离是4,到轴的距离是3,所以点的坐标为,故选:.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.12、A【解析】
根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【详解】解:一次函数y=3x+k-2的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,k-2=1;经过一三四象限时,k-2<1.故k≤2.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二、填空题(每题4分,共24分)13、;【解析】
在△ACD、△ADE、△DEC都是含有30°的直角三角形,利用边之间的关系,得出各边长,从而得出△ABC的周长.【详解】∵∠C=90°,∠B=30°,DE=1∴在Rt△DEB中,DB=2,EB=∵AD是∠CAB的角平分线∴CD=DE=1,∠CAD=∠DAE=30°∴在Rt△ACD中,AD=2,同理,在Rt△ADE中,AD=2,AE=∴△ABC的周长=AE+EB+BD+DC+CA=3+3故答案为:3+3.【点睛】本题考查含30°角的直角三角形、角平分线的性质,解题关键是得出△ACD、△ADE、△DEC都是含有30°的直角三角形.14、1【解析】
已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【详解】解:∵△ABC是直角三角形,CD是斜边的中线,∴AB=2CD又∵EF是△ABC的中位线,
∴AB=2CD=2×1=10cm,故答案为:1.【点睛】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.15、【解析】
由题意设,再代入代数式求值即可.【详解】由题意设,,则【点睛】考查了代数式求值,本题属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.16、(1,1)或(,)或(1,1)【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论【详解】∵点A的坐标为(1,0),∴OA=1.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=1,∴点P1的坐标为(1,1);②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.∵OP1=OA=1,∴OB=BP1=,∴点P1的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=1,∴AP3=OA=1,∴点P3的坐标为(1,1).综上所述:点P的坐标为(1,1)或(,)或(1,1).故答案为:(1,1)或(,)或(1,1).【点睛】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.17、1【解析】
先把x2+2xy+y2进行变形,得到(x+y)2,再把x,y的值代入即可求出答案.【详解】∵x=,,∴x2+2xy+y2=(x+y)2=(+1+﹣1)2=(2)2=1;故答案为:1.【点睛】此题考查了二次根式的化简求值,用到的知识点是完全平方公式,二次根式的运算,关键是对要求的式子进行变形.18、8【解析】【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.【详解】∵四边形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S阴影==8,故答案为8.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.三、解答题(共78分)19、当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.【解析】
分别从当Q运动到E和B之间、当Q运动到E和C之间去分析求解即可求得答案.【详解】解:是的中点,,①当运动到和之间,设运动时间为,则得:,解得:;②当运动到和之间,设运动时间为,则得:,解得:,当运动时间为秒或秒时,以点,,,为顶点的四边形是平行四边形.【点睛】此题考查了梯形的性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.20、(1)α;(2)DM=DN,理由见解析【解析】
(1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°-α,然后利用互余可得到∠EDB=α;(2)①如图,利用∠EDF=180°-2α画图;②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°-2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;【详解】解:(1)∵AB=AC,
∴∠B=∠C=12(180°-∠A)=90°-α,
而DE⊥AB,
∴∠DEB=90°,
∴∠EDB=90°-∠B=90°-(90°-α)=α;
故答案为:α(2)①补全图形如图所示.②结论:DM=DN.理由;在四边形AEDF中,∠A=2α,DE⊥AB于点E,DF⊥AC于点F,∴∠EDF=360连接AD,∵点D是BC边的中点,AB=AC,∴DE=DF,又∵射线DM绕点D顺时针旋转180°-2a与AC边交于点∴∠MDN=180∵∠EDM+∠MDF=∠FDN+∠MDF=180∴∠EDM=∠FDN,∴ΔDEM≅ΔDFN,∴DM=DN.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是利用数形结合区找出边和角的关系,然后解决问题.21、这两个多边形的边数分别为12和6.【解析】
n边形的对角线有条,2n边形的对角线有条,根据题意可列出方程,再解方程求解即可.【详解】解:由多边形的性质,可知边形共有条对角线.由题意,得.解得.∴.∴这两个多边形的边数分别为12和6.【点睛】本题考查了多边形对角线的性质(条数)和解一元一次方程,熟记n边形对角线的条数公式是解此题的关键.22、(1)、;(2)、2.【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将a与b的值代入计算即可求出值.【详解】解:(1)原式==(2)原式=1﹣•=1-=当a=﹣,b=1时,原式=2.考点:分式的化简求值;分式的混合运算23、(1)(6,3);(2);(3)(0,0);(4)(6,9)或(6,-3)或(-6,3).【解析】
(1)直接联立两直线解析式,即可得到点A的坐标;(2)直接在图象上找到时,x的取值范围;(3)过点A作交点为E即可得出点D与点O重合的时候,△的周长最短,即可得出点D的坐标;(4)分三种情况考虑:当四边形OAQ1C为平行四边形时;当四边形OQ2AC为平行四边形时;当四边形OACQ3为平行四边形时,分别求出点Q的坐标即可.【详解】(1)联立两直线解析式可得解得:点A的坐标为(6,3)(2)由点A(6,3)及图象知,当时,(3)过点A作交点为E,由图可知点B关于直线AE的对称点为点O当点D与点O重合的时候,△的周长最短即为CO+BC=6+6此时点D的坐标为(0,0)(4)存在点,使以为顶点的四边形是平行四边形如图所示,分三种情况考虑:当四边形OAQ1C为平行四边形时,点Q1的横坐标为6,纵坐标为点C的纵坐标+3=9Q1的坐标为(6,9)当四边形OQ2AC为平行四边形时,点Q2的横坐标为6,纵坐标为点A的纵坐标-6=-3Q2的坐标为(6,-3)当四边形OACQ3为平行四边形时,点Q3关于OC的对称点为点AQ3的坐标为(-6,3)综上点Q的坐标为:(6,9)或(6,-3)或-6,3).【点睛】本题考查了一次函数的性质,平行四边形的性质,轴对称的性质,解题的重点是要熟练掌握各自的性质.24、(1)见解析;(2)见解析;(3)1【解析】
(1)根据平行线的性质得出,根据全等三角形的判定得出,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业可持续发展目标(SDGs)在品牌建设中的策略研究2025年报告
- 跟腱断裂的诊断与治疗
- 2023-2024学年海南省澄迈县八年级上学期期末语文试题及答案
- 体会课文题目及答案
- 兼职编导管理办法
- 内审组管理办法
- 内部收费管理办法
- 内部评标管理办法
- 军人致留管理办法
- 军队人事管理办法
- 宁夏中卫人文介绍
- 湖南省英语高考试题与参考答案(2025年)
- 个人对公司借款协议范本
- 行政执法资格证法律知识考试复习题及答案
- 广西壮族自治区2025年普通高校招生考生报名登记表(样表)
- 统编版语文三年级上册第6单元大单元教学设计
- 精神分裂症合并糖尿病患者护理查房课件
- GB/T 44230-2024政务信息系统基本要求
- 宫腔镜技术诊断子宫内膜癌的临床应用
- 电气设计笔记:电缆热稳定校验计算表
- 2024-2025学年八年级上册数学第一次月考试卷01【沪科版】
评论
0/150
提交评论