版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广东省茂名市信宜第三中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若a、b是任意实数,且a>b,则(
)A.a2>b2 B. C.lg(a﹣b)>0 D.参考答案:D【考点】不等式比较大小.【专题】综合题.【分析】由题意可知a>b,对于选项A、B、C举出反例判定即可.【解答】解:a、b是任意实数,且a>b,如果a=0,b=﹣2,显然A不正确;如果a=0,b=﹣2,显然B无意义,不正确;如果a=0,b=﹣,显然C,lg>0,不正确;满足指数函数的性质,正确.故选D.【点评】本题考查比较大小的方法,考查各种代数式的意义和性质,是基础题.2.已知F1、F2为椭圆E的左、右焦点,抛物线C以F1为顶点,F2为焦点,设P为椭圆与抛物线的一个交点,如果椭圆的离心率为e,且|PF1|=e|PF2|,则e的值为(
)A.
B.
C.
D.参考答案:A3.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2参考答案:A考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.4.已知全集,集合,,则(
)A. B.
C. D.参考答案:D略5.已知,则(
)A. B.C. D.参考答案:C【分析】通过反例可否定;根据对数函数单调性可确定正确.【详解】若,A中,,,则,错误;B中,,,则,错误;C中,在上单调递增
当时,,正确;D中,,,则,错误.故选:【点睛】本题考查根据不等式的性质比较大小的问题,涉及到对数函数单调性的应用,属于基础题.6.若函数与的定义域均为R,则A.与与均为偶函数
B.为奇函数,为偶函数C.与与均为奇函数
D为偶函数,为奇函数参考答案:D7.从集合任意取出两个数,这两个数的和是偶数的概率是()A.B.C.D.参考答案:C8.设向量满足,,则=()A.
B.
C.
D.参考答案:B略9.观察下面频率等高条形图,其中两个分类变量之间关系最强的是
A.
B.
C.
D.参考答案:在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中所占比例相差越大,则分类变量关系越强,故选.10.将一个白球,两个相同的红球,三个相同的黄球摆放成一排。则白球与黄球不相邻的放法有(
) A.10种 B.12种 C.14种 D.16种参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知向量、满足,则____________.参考答案:5略12.若向量和向量垂直,则__________.参考答案:5【分析】由向量垂直,解得,进而得到,由此能求出的值.【详解】向量和向量垂直,解得:
本题正确结果:
13.已知是函数的一条对称轴,若将函数的图象向右平移个单位所得图象关于y轴对称,则的最小值为
参考答案:14.已知直线x-y+c=0与圆(x-1)2+y2=2有且只有一个公共点,那么c=__________.
参考答案:-3或115.已知函数,则f(﹣log23)=
;若,则x=.参考答案:,1.【考点】函数的值.【分析】由分段函数定义得f(﹣log23)=,由此能求出结果.由,得当x≥0时,f(x)=﹣x2,f(f(x))=f(﹣x2)==;当x<0时,f(x)=2x,f(f(x))=f(2x)=﹣(2x)2,由此能求出结果.【解答】解:∵函数,∴f(﹣log23)===.∵,∴当x≥0时,f(x)=﹣x2,f(f(x))=f(﹣x2)==,解得x=±1,∴x=1;当x<0时,f(x)=2x,f(f(x))=f(2x)=﹣(2x)2=﹣22x=,无解.综上,x=1.故答案为:.16.某高中共有学生900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高二年级抽取的人数为
.参考答案:10【考点】分层抽样方法.【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【解答】解:根据题意得,用分层抽样在各层中的抽样比为=,则在高二年级抽取的人数是200×=10人,故答案为:10.17.函数的定义域为_______________.参考答案:【知识点】函数的定义域及其求法.B1
【答案解析】
解析:由题意得,∴﹣4≤x≤1且x≠0.∴定义域是:,故答案为:。【思路点拨】根据负数不能开偶次方根和分母不能为零求解.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(I)当时,求曲线在点处的切线方程;(II)求的单调区间;(III)若在区间上恒成立,求实数的取值范围.参考答案:解:(I)因为,,所以,
,,
所以切线方程为.
(II),
由得,
当时,在或时,在时,所以的单调增区间是和,单调减区间是;
当时,在时,所以的单调增区间是;当时,在或时,在时.所以的单调增区间是和,单调减区间是.(III)由(II)可知在区间上只可能有极小值点,所以在区间上的最大值在区间的端点处取到,即有且,解得.
略19.(本小题12分)2011年4月28日开始的西安世园会,会期有26个星期。工作人员对5月16日至5月22日一个星期的参观人数进行统计并绘制了下面的频率分布直方图.且5月16日参观人数为50000人。(Ⅰ)请计算值,并根据该图计算这一个星期的参观人数,并据此估计世园会期间参观的总人数(精确到);(Ⅱ)世园会有七大主题园区.某人参观A,B,C区各需花费2个小时,D,E,F,G区各需花费1个小时.如果他参观了5个小时(不计路途及休息时间),且一定参观了A区,求他还参观了D区的概率.参考答案:答案:(1)设一周内的样本容量为n,则---------------2,---------------4估计世园会期间有万人---------------6(2)某人参观5个小时且一定参观A区的所有结果如下:共12种,---------------9计事件M=某人还参观了D区,共包含5个结果,---------------12略20.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c﹣a)cosB﹣bcosA=0.(Ⅰ)求角B的大小;(Ⅱ)求sinA+sin(C﹣)的取值范围.参考答案:【考点】HP:正弦定理;GQ:两角和与差的正弦函数.【分析】(Ⅰ)在△ABC中,由条件利用正弦定理、两角和差的正弦公式可得sinC(2cosB﹣1)=0,故有cosB=,由此求得B的值.(Ⅱ)由(Ⅰ)可得sinA+sin(C﹣)=2sin(A+),根据A∈(0,),利用正弦函数的定义域和值域求得sinA+sin(C﹣)的取值范围.【解答】解:(Ⅰ)在△ABC中,∵(2c﹣a)cosB﹣bcosA=0,∴2sinCcosB﹣sinAcosB﹣sinBcosA=0,即2sinCcosB﹣sin(A+B)=0,即sinC(2cosB﹣1)=0,∴cosB=,∴B=.(Ⅱ)由(Ⅰ)可得sinA+sin(C﹣)=sinA+cosA=2sin(A+),∵A∈(0,),∴A+∈(,),sin(A+)∈(,1],∴2sin(A+)∈(1,2],即sinA+sin(C﹣)的取值范围是(1,2].21.已知椭圆x2+(m+3)y2=m(m>0)的离心率e=,求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标。参考答案:解析:椭圆的方程可化为,
…………2分∵m>0,∴m–>0,∴m>,
…………4分即a2=m,b2=,∴c=
…………6分由e=得=,解得m=1,所以椭圆方程为x2+4y2=1;…………10分所以a=1,b=,c=,则椭圆的长轴长为2,短轴长为1,焦点坐标为(±,0),顶点坐标为(±1,0)、(0,±)
…………16分22.(12分)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试岗合同协议书
- 试用用工协议书
- 2025解放军总医院第一医学中心社会招聘138人考试重点试题及答案解析
- 并购合同或协议
- 工伤报销协议书
- 工资的合同范本
- 银行转信贷协议书
- 异地签注协议书
- 引资项目协议书
- 学生结对协议书
- 混合型高脂血症基层诊疗中国专家共识2024解读
- DL-T5842-2021110kV~750kV架空输电线路铁塔基础施工工艺导则
- 庙坝镇规划方案公示
- 叉车考试题库
- 《机修工基础培训》课件
- 口腔正畸学课件
- 一次调频综合指标计算及考核度量方法
- 《杀死一只知更鸟》读书分享PPT
- 成功的三大要素
- GB/T 41932-2022塑料断裂韧性(GIC和KIC)的测定线弹性断裂力学(LEFM)法
- GB/T 7253-2019标称电压高于1 000 V的架空线路绝缘子交流系统用瓷或玻璃绝缘子元件盘形悬式绝缘子元件的特性
评论
0/150
提交评论