版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)2.已知,若,则等于()A. B.1 C.2 D.3.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.4.函数的最小正周期为,则的图象的一条对称轴方程是()A. B. C. D.5.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.06.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为()A. B. C. D.7.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.8.已知,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴的方程为()A. B. C. D.9.已知、的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.10.已知,则的值等于()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______.12.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.13.已知圆上有两个点到直线的距离为3,则半径的取值范围是________14.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为.15.已知,,,则在方向上的投影为__________.16.函数是定义域为R的奇函数,当时,则的表达式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量且,(1)求向量与的夹角;(2)求的值.18.已知定义域为的函数在上有最大值1,设.(1)求的值;(2)若不等式在上恒成立,求实数的取值范围;(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).19.正四棱锥S-ABCD的底面边长为2,侧棱长为x.(1)求出其表面积S(x)和体积V(x);(2)设,求出函数的定义域,并判断其单调性(无需证明).20.已知(1)求的定义域;(2)判断的奇偶性并予以证;;(3)求使>0成立的x的取值范围.21.等差数列的前项和为,数列是等比数列,满足,,,,.(1)求数列和的通项公式;(2)令,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【点睛】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.2、A【解析】
首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.3、D【解析】
由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.4、B【解析】
根据最小正周期为求解与解析式,再求解的对称轴判断即可.【详解】因为最小正周期为,故.故,对称轴方程为,解得.当时,.故选:B【点睛】本题主要考查了三角函数最小正周期的应用以及对称轴的计算.属于基础题.5、C【解析】
由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;
②,则平行,相交,异面都有可能,故不正确;
③,则与α平行,相交都有可能,故不正确.
故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.6、A【解析】
利用弧长公式、扇形的面积计算公式即可得出.【详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题.7、C【解析】
由复合函数单调性及函数的定义域得不等关系.【详解】由题意,解得.故选:C.【点睛】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.8、B【解析】分析:由左加右减,得出解析式,因为解析式为正弦函数,所以令,解出,对k进行赋值,得出对称轴.详解:由左加右减可得,解析式为正弦函数,则令,解得:,令,则,故选B.点睛:三角函数图像左右平移时,需注意要把x放到括号内加减,求三角函数的对称轴,则令等于正弦或余弦函数的对称轴公式,求出x解析式,即为对称轴方程.9、A【解析】
计算出、,再将点的坐标代入回归直线方程,可求出的值.【详解】由表格中的数据可得,,由于回归直线过样本的中心点,则有,解得,故选:A.【点睛】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点这一结论,考查计算能力,属于基础题.10、D【解析】
根据分段函数的定义域以及函数解析式的关系,代值即可.【详解】故选:D【点睛】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意得出,然后在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】由题意得出.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.12、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.13、【解析】
由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.14、【解析】
由题意可得:该三棱锥的三条侧棱两两垂直,长都为,所以三棱锥的体积.考点:三棱锥的体积公式.15、【解析】
根据数量积的几何意义计算.【详解】在方向上的投影为.故答案为:1.【点睛】本题考查向量的投影,掌握投影的概念是解题基础.16、【解析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的数量积的运算法则化简,进而求出向量与的夹角;(Ⅱ)利用,对其化简,代入数值,即可求出结果.【详解】解:(Ⅰ)由得因向量与的夹角为(Ⅱ)【点睛】本题考查平面向量的数量积的应用,以及平面向量的夹角以及平面向量的模的求法,考查计算能力.18、(1)0;(2);(3)【解析】
(1)结合二次函数的性质可判断g(x)在[1,2]上的单调性,结合已知函数的最大值可求m;(2)由(1)可知f(x),由原不等式可知2k1在x∈[3,9]上恒成立,结合对数与二次函数的性质可求;(3)原方程可化为|ex﹣1|2﹣(3k+2)|ex﹣1|+(2k+1)=0,利用换元q=|ex﹣1|,结合二次函数的实根分布即可求解.【详解】(1)因为在上是增函数,所以,解得.(2)由(1)可得:所以不等式在上恒成立.等价于在上恒成立令,因为,所以则有在恒成立令,,则所以,即,所以实数的取值范围为.(3)因为令,由题意可知令,则函数有三个不同的零点等价于在有两个零点,当,此时方程,此时关于方程有三个零点,符合题意;当记为,,且,,所以,解得综上实数的取值范围.【点睛】本题主要考查了二次函数的单调性的应用,不等式中的恒成立问题与最值的相互转化,二次函数的实根分布问题等知识的综合应用,是中档题19、(1),;(2)x>,是减函数.【解析】
(1)画出图形,分别求出四棱锥的高,及侧面的高的表达式,即可求出表面积与体积的表达式;(2)结合表达式,可求出的范围,即定义域,然后判断其为减函数.【详解】(1)过点作平面的垂线,垂足为,取的中点,连结,因为为正四棱锥,所以,,,,所以四棱锥的表面积为,体积.(2),解得,是减函数.【点睛】本题考查了四棱锥的结构特征,考查了表面积与体积的计算,考查了学生的空间想象能力与计算能力,属于中档题.20、(1);(2)奇函数,证明见解析;(3)见解析【解析】
(1)解不等式即得函数的定义域;(2)利用奇偶性的定义判断函数的奇偶性并证明;(3)对a分类讨论,利用对数函数的单调性解不等式.【详解】(1)由题得,所以,所以函数的定义域为;(2)函数的定义域为,所以函数的定义域关于原点对称,所以,所以函数f(x)为奇函数.(3)由题得,当a>1时,所以,因为函数的定义域为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46951-2025建筑施工单位节水管理规范
- 吉林省吉林市蛟河市2025-2026学年七年级上学期1月期末考试地理试卷(无答案)
- 贵州省安顺市2025-2026学年上学期期末高二数学试卷(含答案)
- 广东省中山市2025-2026学年八年级上学期期末测试地理试卷(无答案)
- 2025-2026学年山东省烟台市高三(上)期末数学试卷(含答案)
- 12月衍生品月报:衍生品市场提示情绪中性
- 飞机配送员培训课件模板
- 2026年玉沣科技(西安)有限公司招聘(39人)备考考试题库及答案解析
- 2026山东事业单位统考烟台招远市招聘47人备考考试题库及答案解析
- 2026年度延边州教育局所属事业单位教师专项招聘(53人)参考考试题库及答案解析
- 高考英语必背688个高频词汇清单
- 橡胶行业职业卫生课件
- DZ/T 0262-2014集镇滑坡崩塌泥石流勘查规范
- DBJ50-T-086-2016重庆市城市桥梁工程施工质量验收规范
- 《造血干细胞移植护理指南》课件
- 中国土壤污染防治法培训
- 升降车安全技术交底(一)
- 附:江西省会计师事务所服务收费标准【模板】
- 合欢花苷类对泌尿系感染的抗菌作用
- 合伙人股权合同协议书
- 工程施工监理技术标
评论
0/150
提交评论