版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年四川省宜宾市第十二中学高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.﹣=()A.B.C.D.参考答案:D略2.已知数列满足,则的通项公式为(
)A.
B.
C.
D.参考答案:B略3.设,,若是的必要不充分条件,则实数a的取值范围是(
).A. B.C. D.参考答案:A【分析】先由题意分别得到对应的集合与集合,再由是的必要不充分条件,得到,进而可求出结果.【详解】由题意可得:对应集合,对应集合,∵是的必要不充分条件,∴是的充分不必要条件,∴,∴且,∴.故选A4.已知点A(﹣1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(
)A.e与x0一一对应 B.函数e(x0)无最小值,有最大值C.函数e(x0)是增函数 D.函数e(x0)有最小值,无最大值参考答案:B【考点】椭圆的简单性质.【专题】计算题.【分析】由题意可得c=1,椭圆离心率e=,由椭圆的定义可得PA+PB=2a,a=,再由PA+PB有最小值而没有最大值,从而得出结论.【解答】解:由题意可得c=1,椭圆离心率e==.故当a取最大值时e取最小,a取最小值时e取最大.由椭圆的定义可得PA+PB=2a,a=.由于PA+PB有最小值而没有最大值,即a有最小值而没有最大值,故椭圆离心率e有最大值而没有最小值,故B正确,且D不正确.当直线y=x+2和椭圆相交时,这两个交点到A、B两点的距离之和相等,都等于2a,故这两个交点对应的离心率e相同,故A不正确.由于当x0的取值趋于负无穷大时,PA+PB=2a趋于正无穷大;而当当x0的取值趋于正无穷大时,PA+PB=2a也趋于正无穷大,故函数e(x0)不是增函数,故C不正确.故选B.【点评】本题主要考查椭圆的定义、以及简单性质的应用,属于中档题.5.下列命题中正确命题的个数是(
)①“若,则”的逆否命题为“若,则”;②“”是“”的必要不充分条件;③若“”为假命题,则p,q均为假命题;④若命题:,,则:,.A.1 B.2 C.3 D.4参考答案:C【分析】由四种命题之间的转化、复合命题的真假判断和充要条件的推导求解.【详解】①正确;由解得且,“”是“”的必要不充分条件,故②正确;③若“”为假命题,则,至少有一个为假命题,故③错误;④正确.故选C.【点睛】本题考查四种命题、复合命题和充要条件,属于基础题.6.“”是“”的(
)A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要参考答案:B【分析】求出的的范围,根据集合之间的关系选择正确答案.【详解】,因此是的必要不充分条件.故选B.【点睛】本题考查充分必要条件的判断,充分必要条件队用定义判定外还可根据集合之间的包含关系确定.如对应集合是,对应集合是,则是的充分条件是的必要条件.7.极坐标方程ρ2cos2θ=1所表示的曲线是()A.圆 B.两条相交直线
C.椭圆
D.双曲线参考答案:D略8.已知椭圆方程,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率()A.
B.
C.2 D.3参考答案:c略9.已知P为抛物线上的点,若点P到直线l:的距离最小,则点P的坐标为() A.(2,8) B. C.(1,2) D.(4,32)参考答案:B10.袋中有大小相同的3个红球,7个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是()A. B. C. D.参考答案:B设事件为“第一次取白球”,事件为“第二次取红球”,则,,故.故选:B点睛:点睛:本题考查的是条件概率.条件概率一般有两种求解方法:(1)定义法:先求P(A)和P(AB),再由P(B|A)=,求P(B|A).(2)基本事件法:借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=.二、填空题:本大题共7小题,每小题4分,共28分11.若命题“存在实数”是假命题,则实数a的取值范围为
。参考答案:略12.设关于的不等式的解集中整数的个数为,则数列的前项和=____________.参考答案:13.已知α,β∈(﹣,),tanα,tanβ是二次方程x2+x+1+=0的两实根,则α+β=.参考答案:﹣利用韦达定理求得tan(α+β)的值,再根据α+β的范围,求得α+β的值.解:∵α,β∈(﹣,),tanα,tanβ是二次方程x2+x+1+=0的两实根,∴tanα+tanβ=﹣,tanα?tanβ=+1,∴tan(α+β)===1,结合α+β∈(﹣π,π),∴α+β=,或α+β=﹣,当α+β=时,不满足tanα+tanβ=﹣,故舍去,检验α+β=﹣,满足条件.综上可得,α+β=﹣,故答案为:﹣.14.已知存在实数a,满足对任意的实数b,直线都不是曲线的切线,则实数的取值范围是
.参考答案:略15.已知f(x)=ax+bx,若-2f(1)2,-1f(-1)1,则f(2)的范围是________.参考答案:[-7,7]略16.已知,且,则等于________.参考答案:0.02【分析】根据标准正态分布曲线对称性可知且,利用概率和为可求得结果.【详解】由题意知,服从于标准正态分布又本题正确结果:【点睛】本题考查正态分布求解概率问题,属于基础题.17.已知,,则线段AB的中点坐标为________;_________.参考答案:(-1,-1,-1),;三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)已知双曲线过点,且与有相同的渐近线.(Ⅰ)求双曲线的标准方程;(II)过双曲线的一个焦点作倾斜角为45的直线与双曲线交于两点,求.参考答案:(Ⅰ)
…………….4分(Ⅱ)不妨设焦点F(4,0),则直线:y=x-4
由消去y得:
设,则
……12分19.已知椭圆C:=1(a>b>0)的离心率为,且经过点(1,),F1,F2是椭圆的左、右焦点.(1)求椭圆C的方程;(2)点P在椭圆上运动,求|PF1|?|PF2|的最大值.参考答案:【考点】椭圆的简单性质.【分析】(1)由已知列关于a,b,c的方程组,求解方程组可得a,b,c的值,则椭圆方程可求;(2)由题意定义可得|PF1|+|PF2|=2a=4,再由基本不等式求得|PF1|?|PF2|的最大值.【解答】解:(1)由题意,得,解得.∴椭圆C的方程是;(2)∵P在椭圆上运动,∴|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤,当且仅当|PF1|=|PF2|时等号成立,∴|PF1|?|PF2|的最大值为4.20.已知f(x)=2|x﹣2|+|x+1|(1)求不等式f(x)<6的解集;(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.参考答案:【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【分析】(1)利用零点分段法去掉绝对值符号,转化为不等式组,解出x的范围;(2)由基本不等式,可以解得m2+n2+p2≥mn+mp+np,将条件平方可得(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,代入m2+n2+p2≥mn+mp+np,即可证得要求证得式子.【解答】(1)解:①x≥2时,f(x)=2x﹣4+x+1=3x﹣3,由f(x)<6,∴3x﹣3<6,∴x<3,即2≤x<3,②﹣1<x<2时,f(x)=4﹣2x+x+1=5﹣x,由f(x)<6,∴5﹣x<6,∴x>﹣1,即﹣1<x<2,③x≤﹣1时,f(x)=4﹣2x﹣1﹣x=3﹣3x,由f(x)<6,∴3﹣3x<6,∴x>﹣1,可知无解,综上,不等式f(x)<6的解集为(﹣1,3);(2)证明:∵f(x)=2|x﹣2|+|x+1|,∴f(2)=3,∴m+n+p=f(2)=3,且m,n,p为正实数∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9,∵m2+n2≥2mn,m2+p2≥2mp,n2+p2≥2np,∴m2+n2+p2≥mn+mp+np,∴(m+n+p)2=m2+n2+p2+2mn+2mp+2np=9≥3(mn+mp+np)又m,n,p为正实数,∴可以解得mn+np+pm≤3.故证毕.21.已知f(n)=1++++…+,g(n)=﹣,n∈N*.(1)当n=1,2,3时,试比较f(n)与g(n)的大小关系;(2)猜想f(n)与g(n)的大小关系,并给出证明.参考答案:【考点】用数学归纳法证明不等式;不等式比较大小.【分析】(1)根据已知,,n∈N*.我们易得当n=1,2,3时,两个函数函数值的大小,比较后,根据结论我们可以归纳推理得到猜想f(n)≤g(n);(2)但归纳推理的结论不一定正确,我们可用数学归纳法进行证明,先证明不等式f(n)≤g(n)当n=1时成立,再假设不等式f(n)≤g(n)当n=k(k≥1)时成立,进而证明当n=k+1时,不等式f(n)≤g(n)也成立,最后得到不等式f(n)≤g(n)对于所有的正整数n成立;【解答】解:(1)当n=1时,f(1)=1,g(1)=1,所以f(1)=g(1);当n=2时,,,所以f(2)<g(2);当n=3时,,,所以f(3)<g(3).(2)由(1),猜想f(n)≤g(n),下面用数学归纳法给出证明:①当n=1,2,3时,不等式显然成立.②假设当n=k(k≥3)时不等式成立,即即++…+<,那么,当n=k+1时,,因为,所以.由①、②可知,对一切n∈N*,都有f(n)≤g(n)成立.22.“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:0~20002001~50005001~80008001~10000>10000男12368女021062
(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的2×2列联表,并据此判断是否有95%以上的把握认为“评定类型”与“性别”有关?
积极型懈怠型总计男
女
总计
附:0.100.050.0250.0102.7063.8415.0246.635
参考答案:(1)(2)没有以上的把握认为二者有关分析:(1)根据古典概型的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山东轻工职业学院单招综合素质考试模拟测试卷附答案
- 2026云南文山州动物卫生监督所招聘城镇公益性岗位工作人员1人笔试模拟试题及答案解析
- 2026年广东水利电力职业技术学院单招综合素质考试模拟测试卷附答案
- 2026年婚恋心理考试题库及1套参考答案
- 2026年河南普高单招试题及答案1套
- 2026年大心理期末测试题有答案
- 2026年晋中职业技术学院单招职业适应性考试模拟测试卷附答案
- 2026年荆州理工职业学院单招职业倾向性考试题库附答案
- 2026年安徽工业职业技术学院单招职业技能测试题库及答案1套
- 国家能源集团科研总院社会招聘笔试备考试题及答案解析
- 动量守恒定律(教学设计)-2025-2026学年高二物理上册人教版选择性必修第一册
- 2025年全国注册监理工程师继续教育题库附答案
- 网络素养与自律主题班会
- 波形护栏工程施工组织设计方案
- 社区老人心理疏导服务记录表
- 屈光不正诊疗规范
- 国际贸易采购合同(中英文)
- 建设部环卫劳动定额
- 金蝶云星空 V7.2-产品培训-PLM领域-文档管理
- 溶洞注浆施工方案样本
- GB/T 25852-20108级链条用锻造起重部件
评论
0/150
提交评论