版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市关泽第一中学2022-2023学年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,,若此三角形有两解,则b的范围为(
)
A.
B.b>2
C.b<2
D.参考答案:A2.一对共轭双曲线的离心率分别是e1和e2,则e1+e2的最小值为A.
B.2
C.2
D.4参考答案:答案:C解析:设双曲线=1的离心率e1=,则共轭双曲线=1的离心率e2=.e1+e2=≥2·
(a=b时取等号)=2·≥2·
(a=b时取等号).∴e1+e2的最小值为2,选C.
3.设m,n是空间两条不同直线,是空间两个不同平面,当时,下列命题正确的是A.若,则
B.若,则C若,则
D.若,则参考答案:C略4.双曲线的左焦点为,顶点为,是该双曲线右支上任意一点,则分别以线段为直径的两圆一定是(
)
A.相交
B.内切
C.外切
D.相离参考答案:B略5.已知全集,集合,,则(
)A.
B.
C.
D.参考答案:D略6.“a=3”是“直线ax-2y-1=0”与“直线6x-4y+c=0平行”的
(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件参考答案:B7.已知集合,,则(
)A.
B.
C.
D.参考答案:【知识点】交、并、补集的混合运算.A1
【答案解析】C解析:集合A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴?RB=(2,+∞),则A∩?RB=(2,4).故选C【思路点拨】求出集合A中其他不等式的解集,确定出A,求出B的补集,找出A与B补集的交集即可.8.已知集合A={y|y=2x﹣1,x∈R},B={x|y=lg(x﹣2)},则下列结论正确的是()A.﹣1∈A B.3?B C.A∪B=B D.A∩B=B参考答案:D【考点】集合的包含关系判断及应用.【分析】2x>0,可得:y=2x﹣1>﹣1,可得集合A=(﹣1,+∞).由x﹣2>0,可得B.再利用元素与集合之间的关系、集合运算性质即可得出.【解答】解:∵2x>0,∴y=2x﹣1>﹣1,∴集合A={y|y=2x﹣1,x∈R}=(﹣1,+∞).B={x|y=lg(x﹣2)}=(2,+∞),则下列结论正确的是A∩B=B.故选:D.9.已知等差数列的前项之和是,则是的(
)A充分不必要条件
B必要不充分条件
C充分必要条件
D既不充分也不必要条件参考答案:C10.若点M(x,y)为平面区域上的一个动点,则x﹣y的取值范围是()A.[﹣2,0] B.[﹣1,0] C.[﹣1,﹣2] D.[0,2]参考答案:A【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,由图可知,A(1,1),B(0,2),令z=x﹣y,化为y=x﹣z,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为0;直线y=x﹣z过B时,直线在y轴上的截距最大,z有最小值为﹣2.∴x﹣y的取值范围是[﹣2,0].故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过抛物线y2=4x焦点的双曲线的方程是
.参考答案:【考点】双曲线的标准方程;双曲线的简单性质.【分析】设以直线y=±2x为渐近线的双曲线的方程为(λ≠0),再由双曲线经过抛物线y2=4x焦点F(1,0),能求出双曲线方程.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为(λ≠0),∵双曲线经过抛物线y2=4x焦点F(1,0),∴1=λ,∴双曲线方程为:.故答案为:.12.已知,则
.参考答案:513.已知关于x的方程x2-2tx+t2-1=0在区间(-2,4)上有两个实根,则实数t的取值范围为________________.参考答案:略14.过球O表面上一点A引三条长度相等的弦AB,AC,AD,且两两夹角都为60°,若球半径为3,则弦AB的长度为.参考答案:2【考点】LG:球的体积和表面积.【分析】可设棱长为x、列出方程求解.关键就是确定出球心的位置.【解答】解:如图,在正四面体ABCD中、作AO1⊥底面BCD于O1,则O1为△BCD的中心.∵OA=OB=OC=OD=3,∴球心O在底面的射影也是O1,于是A、O、O1三点共线.设正四面体ABCD的棱长为x,则AB=x,BO1=,AO1=,∵OO1=又OO1=AO1﹣AO=由此解得x=,故正四面体ABCD的棱长,即弦AB的长度为2.故答案为.15.已知均为大于0的实数,给出下列五个论断:①,②,③,④,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________.参考答案:①③推出⑤(答案不唯一还可以①⑤推出③等)【分析】选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.【详解】已知均为大于0的实数,选择①③推出⑤.①,③,则,所以.故答案为:①③推出⑤【点睛】此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.16.过抛物线的焦点的直线交该抛物线与两点,若,=
.参考答案:略17.已知函数f(x)=2sin(ωx+φ),(ω>0,0≤φ<2π)的部分图象如图所示,则f(x)=.参考答案:2sin(3x+)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据函数f(x)的部分图象,求出最小正周期T、ω以及φ的值即可.【解答】解:根据函数f(x)=2sin(ωx+φ)的部分图象知,=﹣=π∴T=,∴ω==3,根据五点法画图知,ω?+φ=+φ=2kπ,k∈Z,解得φ=2kπ﹣,k∈Z,∵0≤φ<2π,∴φ=,∴f(x)=2sin(3x+).故答案为:2sin(3x+).三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)(2003?北京)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案:【考点】根据实际问题选择函数类型;函数的最值及其几何意义.【专题】应用题;压轴题.【分析】(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.【解答】解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.【点评】本题以实际背景为出发点,既考查了信息的直接应用,又考查了目标函数法求最值.特别是二次函数的知识得到了充分的考查.在应用问题解答中属于非常常规且非常有代表性的一类问题,非常值得研究.19.
已知椭圆:的离心率,且由椭圆上顶点、右焦点及坐标原点构成的三角形面积为.(Ⅰ)求椭圆的方程;(Ⅱ)已知,过点作直线交椭圆于、两点(异于),直线、的斜率分别为、.试问是否为定值?若是,请求出此定值,若不是,请说明理由.参考答案::(Ⅰ)由题意得,解得,,
所以椭圆的方程为.
………5分(Ⅱ)为定值4,证明如下:……………6分(ⅰ)当直线斜率不存在时,方程为,
由方程组易得,,
于是,,所以为定值.
………………8分
(ⅱ)当直线斜率存在时,设方程为,即,设,,
由方程组消去,得,由韦达定理得()
…………10分
,
将()式代入上式得为定值.
……………13分
【解析】略20.(本题12分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B在AM上,D在AN上,对角线MN过C点,已知|AB|=3米,|AD|=2米,且受地理条件限制,长不超过米。设(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?(2)若|AN|(单位:米),则当AM、AN的长度是多少时,矩形花坛AMPN的面积最大?并求出最大面积.参考答案:解:设AN的长为x米()
∵,∴|AM|=∴SAMPN=|AN|?|AM|=
-
------------------------------------4分21.设函数f(x)=sinωx?cosωx﹣(ω>0)的图象上相邻最高点与最低点距离为.(1)求ω的值;(2)若函数y=f(x+φ)(0<φ<)是奇函数,求函数g(x)=cos(2x﹣φ)在区间上的单调减区间.参考答案:【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)由已知利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2ωx﹣),设T为f(x)的最小值周期,由题意得,结合f(x)max=1,可求T的值,利用周期公式可求ω的值.(2)由题意可求f(x+φ)=sin(x+φ﹣)是奇函数,则sin(φ﹣)=0,结合0<φ<,可求φ,进而可求函数g(x)的解析式,利用余弦函数的图象和性质可求其单调递减区间,结合范围x∈,即可得解.【解答】解:(1)∵=,设T为f(x)的最小值周期,由f(x)图象上相邻最高点与最低点的距离为,得,∵f(x)max=1,∴,整理可得T=2π,又∵ω>0,T==2π,∴ω=.(2)由(1)可得f(x)=sin(x﹣),∴f(x+φ)=sin(x+φ﹣),∵y=f(x+φ)是奇函数,则sin(φ﹣)=0,又∵0<φ<,∴φ=,∴g(x)=cos(2x﹣φ)=cos(2x﹣),令,则,∴单调递减区间是,又∵x∈,∴当k=0时,递减区间为;当k=1时,递减区间为,∴函数g(x)在上的单调递减区间是,.22.由团中央学校部、全国学联秘书处、中国青年报社共同举办的2018年度全国“最美中学生”寻访活动结果出炉啦,此项活动于2018年6月启动,面向全国中学在校学生,通过投票方式寻访一批在热爱祖国、勤奋学习、热心助人、见义勇为等方面表现突出、自觉树立和践行社会主义核心价值观的“最美中学生”.现随机抽取了30名学生的票数,绘成如图所示的茎叶图,若规定票数在65票以上(包括65票)定义为风华组.票数在65票以下(不包括65票)的学生定义为青春组.(1)如果用分层抽样的方法从青春组和风华组中抽取5人,再从这5人中随机抽取2人,那么至少有1人在青春组的概率是多少?(2)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机选取4人,用表示所选4人中青春组的人数,试写出的分布列,并求出的数学期望.参考答案:(1);(2)分布列见解析,【分析】(1)用A表示“至少有1人在青春组”,利用对立事件概率计算公式能求出至少有1人在青春组的概率.
(2)由题知,抽取的30名学生中有12名学生是青春组学生,抽取1名学生是青春组学生的概率为,从所有的中学生中抽取1名学生是甲组学生的概率是,服从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职酒店管理(宴会策划执行)试题及答案
- 2025年高职(物联网应用技术)工业物联网实务试题及答案
- 2025年高职商务管理(商务谈判)试题及答案
- 2026年广告策划(文案优化)试题及答案
- 2026年手臂按摩仪项目评估报告
- 2025年中职(油脂工程技术)油脂制取综合测试题及答案
- 2025年中职小学教育(小学生安全教育)试题及答案
- 2025年高职物联网(物联网终端调试)试题及答案
- 2025年大学大三(智能电网信息工程)电力系统自动化技术试题及答案
- 2025年中职电气(电气控制基础)试题及答案
- LYT 2085-2013 森林火灾损失评估技术规范
- 材料样品确认单
- 彝族文化和幼儿园课程结合的研究获奖科研报告
- 空调安装免责协议
- 《传感器与检测技术》试题及答案
- 湖北省襄樊市樊城区2023-2024学年数学四年级第一学期期末质量检测试题含答案
- 初中班会主题课件科学的复习事半功倍(共23张PPT)
- PCB封装设计规范
- GB/T 9349-2002聚氯乙烯、相关含氯均聚物和共聚物及其共混物热稳定性的测定变色法
- GB/T 32473-2016凝结水精处理用离子交换树脂
- 《水利水电工程等级划分及洪水标准》 SL252-2000
评论
0/150
提交评论