




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市肇彝中学2022-2023学年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知△ABC中,a=5,b=3,C=120°,则sinA的值为()A. B. C. D.参考答案:A【考点】余弦定理;正弦定理.【专题】计算题.【分析】由C的度数求出sinC和cosC的值,再由a,b的值,利用余弦定理求出c的值,然后再由a,c及sinC的值,利用正弦定理即可求出sinA的值.【解答】解:由a=5,b=3,C=120°,根据余弦定理得:c2=a2+b2﹣2abcosC=25+9﹣30×(﹣)=49,解得c=7,由正弦定理=得:sinA===.故选A【点评】此题考查了正弦定理,余弦定理,以及特殊角的三角函数值,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键.2.已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是()A. B. C. D.参考答案:B【考点】圆锥曲线的轨迹问题.【分析】根据题意,可以整理方程ax2+by2=ab和ax+by+c=0变形为标准形式和斜截式,可以判断其形状,进而分析直线所在的位置可得答案.【解答】解:方程ax2+by2=ab化成:,ax+by+c=0化成:y=﹣x﹣,对于A:由双曲线图可知:b>0,a<0,∴﹣>0,即直线的斜率大于0,故错;对于C:由椭圆图可知:b>0,a>0,∴﹣<0,即直线的斜率小于0,故错;对于D:由椭圆图可知:b>0,a>0,∴﹣<0,即直线的斜率小于0,故错;故选B.3.设函数f(x)=ln(1+|x|)-则使f(2x)>f(x﹣1)成立的x范围为()A.(-∞,-1)∪(,+∞) B.(-1,)C.(-∞,)∪(1,+∞) D.(,1)参考答案:A【考点】函数奇偶性的性质.【专题】综合题;转化思想;演绎法;函数的性质及应用.【分析】根据函数的表达式可知函数f(x)为偶函数,判断函数在x大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,可得|2x|>|x﹣1|,解绝对值不等式即可.【解答】解:函数,定义域为R,∵f(﹣x)=f(x),∴函数f(x)为偶函数,当x>0时,函数单调递增,根据偶函数性质可知:得f(2x)>f(x﹣1)成立,∴|2x|>|x﹣1|,∴4x2>(x﹣1)2,∴(3x﹣1)(x+1)>0∴x的范围为,故选:A.【点评】考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.4.2,则”的原命题、逆命题、否命题、逆否命题四种命题中,真命题的个数是(
)A.0
B.2
C.3
D.4参考答案:B5.函数y=x+
()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,最大值2D.无最大值,也无最小值参考答案:A6.设是可导函数,且(
)A. B.-1 C.0 D.-2参考答案:B略7.已知函数在处取得极大值,在处取得极小值,满足,,则的取值范围是(A)
(B)
(C)
(D)参考答案:D8.数列,……则2是这个数列的
(
)A.第六项
B.第七项
C.第八项 D.第九项参考答案:B略9.过点P(4,8)且被圆x2+y2=25截得的弦长为6的直线方程是()A.3x﹣4y+20=0 B.3x﹣4y+20=0或x=4C.4x﹣3y+8=0 D.4x﹣3y+8=0或x=4参考答案:B【考点】直线与圆的位置关系.【分析】由圆的方程,可知圆心(0,0),r=5,圆心到弦的距离为4,若直线斜率不存在,则垂直x轴x=4,成立;若斜率存在,由圆心到直线距离d==4,即可求得直线斜率,求得直线方程.【解答】解:圆心(0,0),r=5,圆心到弦的距离为4,若直线斜率不存在,则垂直x轴x=4,圆心到直线距离=|0﹣4|=4,成立;若斜率存在y﹣8=k(x﹣4)即:kx﹣y﹣4k+8=0则圆心到直线距离d==4,解得k=,综上:x=4和3x﹣4y+20=0,故选B.10.已知直线与直线垂直,则实数等于(
)
A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则旅行变换后的第9项为1(注:1可以多次出现),则n的所有不同值的个数为
.参考答案:7【考点】8B:数列的应用.【分析】利用第9项为1出发,按照规则,逆向逐项即可求出n的所有可能的取值.【解答】解:如果正整数n按照上述规则施行变换后的第9项为1,则变换中的第8项一定是2,则变换中的第7项一定是4,变换中的第6项可能是1,也可能是8;变换中的第5项可能是2,也可是16,变换中的第5项是2时,变换中的第4项是4,变换中的第3项是1或8,变换中的第2项是2或16,变换中的第5项是16时,变换中的第4项是32或5,变换中的第3项是64或10,变换中的第2项是20或3,变换中第2项为2时,第1项为4,变换中第2项为16时,第1项为32或5,变换中第2项为3时,第1项为6,变换中第2项为20时,第1项为40,变换中第2项为21时,第1项为42,变换中第2项为128时,第1项为256,则n的所有可能的取值为4,5,6,32,40,42,256,共7个,故答案为:7.12.已知直线交抛物线于A、B两点,若该抛物线上存在点C,使得为直角,则的取值范围为___________.参考答案:略13.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为_______.参考答案:略14.某单位有老年人人,中年人人,青年人人,为调查身体健康状况,需要从中抽取一个容量为的样本,用分层抽样方法应分别从老年人、中年人、青年人中各抽取
人、
人、
人.参考答案:略15.小明通过做游戏的方式来确定周末活动,他随机地往单位圆中投掷一点,若此点到圆心的距离大于,则周末看书;若此点到圆心的距离小于,则周末打篮球;否则就在家帮忙做家务.那么小明周末在家帮忙做家务的概率是.参考答案:【考点】CF:几何概型.【分析】根据题意,计算可得圆的面积为π,点到圆心的距离大于的面积为π﹣π=,此点到圆心的距离小于的面积为,由几何概型求概率即可.【解答】解:设圆半径为1,圆的面积为π,点到圆心的距离大于的面积为π﹣π=,此点到圆心的距离小于的面积为,由几何概型得小波周末在家看书的概率为P=1﹣=.故答案为:16.数列{an}满足,(),则
.参考答案:数列{an}满足,,变形得到则。
17.观察下列不等式:①;②;③;…则第个不等式为___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在二项式的展开式中,前三项系数的绝对值成等差数列.(12分)(1)求展开式的第四项;(2)求展开式的常数项;参考答案:
(1)
(2)
略19.(本小题12分)已知圆和点(Ⅰ)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(Ⅱ)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离.(1)求的值;(2)求两弦长之积的最大值.参考答案:(Ⅰ),得,∴切线方程为即(Ⅱ)①当都不过圆心时,设于,则为矩形,,当中有一条过圆心时,上式也成立②∴(当且仅当时等号成立)20.如图,已知点D(0,-2),过点D作抛物线:的切线l,切点A在第二象限。(1)求切点A的纵坐标;(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。
参考答案:解:(1)设切点A,依题意则有解得,即A点的纵坐标为2
……………3分(2)依题意可设椭圆的方程为,直线AB方程为:;由得①由(1)可得A,将A代入①可得,故椭圆的方程可简化为;
………………5分联立直线AB与椭圆的方程:消去Y得:,则
………………8分又∵,∴k∈[-2,-1];即……9分(3)由可知上为单调递增函数,故当k=-1时,取到最大值,此时P=4,故椭圆的方程为…12分略21.已知椭圆的离心率,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)直线过椭圆的上焦点,交椭圆于,两点,已知,,若,求直线的斜率的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届安徽省芜湖县一中高二物理第二学期期末监测试题含解析
- 创新教育模式下的领导力挑战与机遇
- 商业视角下的教育产业变革游戏化学习的融资前景
- 实验教学中学生情感教育的教育心理学方法
- 教育资源的优化配置与科技力量的运用
- 学习动力激发的教育心理学方法论
- 政府推动的教育政策在社区的落地情况
- 2025届陕西省渭南市合阳县高一物理第二学期期末监测试题含解析
- 全面基础护士考试题库及答案
- 未来办公模式的探索沉浸式学习与自适应平台的结合
- 生产车间安全隐患300条
- 急诊科护理带教老师竞聘
- 2025公安辅警招聘知识考试题库及参考答案
- 高校分类评价机制构建和学科评价体系研究
- 2025年吉林省中考历史试卷真题及答案详解(精校打印版)
- 四川华西集团有限公司总部管理人员选聘笔试真题2024
- 山东济南综保控股集团招聘笔试真题2024
- 商场动火作业培训
- 2025年KET剑桥英语五级考试全真试卷(秋季版:含答案解析)
- 离婚一方财产转移
- 施工总进度计划与进度保证措施
评论
0/150
提交评论