版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为虚数单位,复数满足,则的共轭复数()A. B. C. D.2.,,则的值为()A. B. C. D.3.若集合,,则有()A. B. C. D.4.已知向量,,且,若实数满足不等式,则实数的取值范围为()A. B. C. D.5.已知,将函数的图象向左平移个单位,得到的图象关于轴对称,则为()A. B. C. D.6.在平面直角坐标系中,已知抛物线的焦点为,过点的直线与抛物线交于,两点,若,则的面积为()A. B. C. D.7.某研究机构在对具有线性相关的两个变量和进行统计分析时,得到的数据如下表所示.由表中数据求得关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线上方的概率为()4681012122.956.1A. B. C. D.无法确定8.已知函数,则()A. B.e C. D.19.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为,则甲获胜的概率为().A. B.C. D.10.已知直线的倾斜角为,直线与双曲线的左、右两支分别交于两点,且都垂直于轴(其中分别为双曲线的左、右焦点),则该双曲线的离心率为A. B. C. D.11.已知,,若,则x的值为()A. B. C. D.12.已知椭圆,点在椭圆上且在第四象限,为左顶点,为上顶点,交轴于点,交轴于点,则面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在上随机地取一个数,则事件“直线与圆相交”发生的概率为__________.14.设椭圆的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.若直线PA与PB的斜率之积为,则椭圆的离心率为_____.15.有位同学参加学校组织的政治、地理、化学、生物门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有人报名的方案有______.16.已知的顶点,分别为双曲线左、右焦点,顶点在双曲线上,则的值等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线(为参数,),曲线(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:,记曲线与的交点为.(Ⅰ)求点的直角坐标;(Ⅱ)当曲线与有且只有一个公共点时,与相较于两点,求的值.18.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线与椭圆C相交于A、B两点,在y轴上是否存在点D,使直线AD与BD关于y轴对称?若存在,求出点D坐标;若不存在,请说明理由.19.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.20.(12分)7名同学,在下列情况下,各有多少种不同安排方法?(答案以数字呈现)(1)7人排成一排,甲不排头,也不排尾.(2)7人排成一排,甲、乙、丙三人必须在一起.(3)7人排成一排,甲、乙、丙三人两两不相邻.(4)7人排成一排,甲、乙、丙三人按从高到矮,自左向右的顺序(不一定相邻).(5)7人分成2人,2人,3人三个小组安排到甲、乙、丙三地实习.21.(12分)一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球.如果不放回的依次取出2个球.回答下列问题:(Ⅰ)第一次取出的是黑球的概率;(Ⅱ)第一次取出的是黑球,且第二次取出的是白球的概率;(Ⅲ)在第一次取出的是黑球的条件下,第二次取出的是白球的概率.22.(10分)已知集合,设,判断元素与的关系.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由,得,故选A.2、B【解析】
利用同角三角函数的平方关系计算出的值,再利用诱导公式可得出的值.【详解】,,且,由诱导公式得,故选B.【点睛】本题考查同角三角函数的平方关系,同时也考查了诱导公式的应用,在利用同角三角函数基本关系求值时,先要确定角的象限,确定所求三角函数值的符号,再结合相应的公式进行计算,考查运算求解能力,属于基础题.3、B【解析】分析:先分别求出集合M和N,由此能求出M和N的关系.详解:,,故.故选:B.点睛:本题考查两个集合的包含关系的判断,考查指数函数、一元二次函数等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4、A【解析】分析:根据,得到,直线的截距为,作出不等式表示的平面区域,通过平推法确定的取值范围.详解:向量,,且,,整理得,转换为直线满足不等式的平面区域如图所示.画直线,平推直线,确定点A、B分别取得截距的最小值和最大值.易得,分别将点A、B坐标代入,得,故选A.点睛:本题主要考查两向量垂直关系的应用,以及简单的线性规划问题,着重考查了分析问题和解答问题的能力和数形结合思想的应用.目标函数型线性规划问题解题步骤:(1)确定可行区域(2)将转化为,求z的值,可看做求直线,在y轴上截距的最值.(3)将平移,观察截距最大(小)值对应的位置,联立方程组求点坐标.(4)将该点坐标代入目标函数,计算Z.5、D【解析】
由平移后,得,再由图象关于轴对称,得,解之即可.【详解】将函数的图象向左平移个单位,得图象关于轴对称,即又时满足要求.故选:D【点睛】本题考查了三角函数图象的平移和函数的对称性,属于中档题.6、C【解析】
设直线的方程为,联立,可得,利用韦达定理结合(),求得,的值,利用可得结果.【详解】因为抛物线的焦点为所以,设直线的方程为,将代入,可得,设,,则,,因为,所以,所以,,所以,即,所以,所以的面积,故选C.【点睛】本题主要考查抛物线的方程与几何性质以及直线与抛物线的位置关系,属于中档题.解答有关直线与抛物线位置关系问题,常规思路是先把直线方程与-抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.7、B【解析】
求出样本的中心点,计算出,从而求出回归直线方程,个点中落在回归直线上方的有三个,算出概率即可。【详解】由题可得,因为线性回归方程过样本中心点,所以,所以,所以,故个点中落在回归直线上方有,,,共个,所以概率为.故选B.【点睛】本题考查线性回归方程和古典概型,解题的关键是求出线性回归方程,属于一般题。8、C【解析】
先求导,再计算出,再求.【详解】由题得,所以.故选:C.【点睛】本题主要考查导数的计算,意在考查学生对该知识的掌握水平和基本的计算能力,属基础题.9、C【解析】
先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为,若前两局都是甲赢,所求概率为,因此,甲获胜的概率为,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.10、D【解析】
根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率.【详解】直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴,根据双曲线的对称性,设点,,则,即,且,又直线的倾斜角为,直线过坐标原点,,,整理得,即,解方程得,(舍)故选D.【点睛】本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题.圆锥曲线离心率的计算,常采用两种方法:1、通过已知条件构建关于的齐次方程,解出.根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.2、通过已知条件确定圆锥曲线上某点坐标,代入方程中,解出.根据题设条件,借助表示曲线某点坐标,代入曲线方程转化成关于的一元方程,从而解得离心率.11、D【解析】此题考查向量的数量积解:因为,所以选D.答案:D12、C【解析】
若设,其中,则,求出直线,的方程,从而可得,两点的坐标,表示的面积,设出点处的切线方程,与椭圆方程联立成方程组,消元后判别式等于零,求出点的坐标可得答案.【详解】解:由题意得,设,其中,则,所以直线为,直线为,可得,所以,所以,设处的切线方程为由,得,,解得,此时方程组的解为,即点时,面积取最大值故选:C【点睛】此题考查了椭圆的性质,三角形面积计算公式,考查了推理能力与计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:直线y=kx与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P=.【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.14、.【解析】
设点P的坐标为,代入椭圆方程,运用直线的斜率公式,化简整理,即可得到所求离心率.【详解】设点P的坐标为.由题意,有,①由A(﹣a,0),B(a,0),得,.由,可得,代入①并整理得.由于,故,于是,∴椭圆的离心率.故答案为:.【点睛】本题考查椭圆的方程和性质,考查椭圆离心率的求法,是中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).15、【解析】
由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案.【详解】由题意,先在4位同学中选2人选地理学科,共种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法,故地理学科恰有2人报名的方案有6×9=1种选法,故答案为:1.【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16、【解析】
由题意得,,再利用正弦定理进行求解即可.【详解】解:由题意得,,.故答案为:.【点睛】本题考查双曲线的性质和应用,结合了正弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)1【解析】
试题分析:(1)将转化为普通方程,解方程组可得的坐标;(2)为圆,当有一个公共点时,可求得参数的值,联立的普通方程,利用根与系数的关系可得的值.解:(Ⅰ)由曲线可得普通方程.由曲线可得直角坐标方程:.由得,(Ⅱ)曲线(为参数,)消去参数可得普通方程:,圆的圆心半径为,曲线与有且只有一个公共点,,即,设联立得4x1x2﹣4(x1+x2)+4=2×(﹣1)2﹣4×(﹣1)﹣44=1..18、(1);(2)见解析.【解析】分析:(1)由题意得,求解即可;(2)假设存在点满足条件,则,设,,,联立方程,从而可得,又由,得,从而求得答案.详解:(Ⅰ)由题意,设椭圆方程为,则有,解得,所以椭圆C的方程为.(Ⅱ)假设存在点满足条件,则.设,,,联立方程,得,,,由,得,即,综上所述,存在点,使直线AD与BD关于y轴对称.点睛:对题目涉及的变量巧妙的引进参数,利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得结果.19、(1);(2)【解析】试题分析:(1)直线的参数方程是标准参数方程,因此可把直线参数方程代入曲线的方程,由利用韦达定理可得;(2)把点极坐标化为直角坐标,知为直线参数方程的定点,因此利用参数的几何意义可得.试题解析:(1)把直线的参数方程对应的坐标代入曲线方程并化简得7t2+60t﹣125=0设A,B对应的参数分别为t1,t2,则.∴.(2)由P的极坐标为,可得,.∴点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为.∴由t的几何意义可得点P到M的距离为.点睛:过点,倾斜角为的直线的标准参数方程为参数),其中直线上任一点参数的参数具有几何意义:,且方向向上时,为正,方向向下时,为负.20、(1)3600种;(2)720种;(3)1440种;(4)840种;(5)630种【解析】
先特殊后一般.【详解】(1);(2)(3);(4)(5)【点睛】本题考查排列组合,思想先特殊后一般.属于简单题.21、(Ⅰ)(Ⅱ)(Ⅲ)【解析】
(Ⅰ)黑球有3个,球的总数为5个,代入概率公式即可;(Ⅱ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作合同买卖合同范本
- 学校楼房拆除合同协议
- 委托规划建设合同范本
- 怎样作废无效协议合同
- 天猫商城备案合同范本
- 建筑工程延期合同范本
- 文化衫的设计制作美术四年级下册教案
- 防辐射抗污染知识培训教材教案
- 四年级数学下册第单元运算定律减法的性质及应用教案新人教版
- 消防安全技术综合能力习题班教案
- 食品工厂设计 课件 第二章 厂址选择
- 国能拟录人员亲属回避承诺书
- 蚕丝被的详细资料
- 2023年生产车间各类文件汇总
- WORD版A4横版密封条打印模板(可编辑)
- 2013标致508使用说明书
- YD5121-2010 通信线路工程验收规范
- 评价实验室6S检查标准
- 工程质量不合格品判定及处置实施细则
- 外观检验作业标准规范
- GB/T 308.1-2013滚动轴承球第1部分:钢球
评论
0/150
提交评论