版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市东营区史口镇中学心初级中学2024届九年级数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1) B.﹣(x﹣1) C.x+1 D.x﹣12.《代数学》中记载,形如的方程,求正数解的几何方法是:“如图1,先构造一个面积为的正方形,再以正方形的边长为一边向外构造四个面积为的矩形,得到大正方形的面积为,则该方程的正数解为.”小聪按此方法解关于的方程时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B. C. D.3.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为()A.2 B.2 C.4 D.54.若一个扇形的圆心角是45°,面积为,则这个扇形的半径是()A.4 B. C. D.5.下列四个函数中,y的值随着x值的增大而减小的是()A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)6.如图所示,中,,,点为中点,将绕点旋转,为中点,则线段的最小值为()A. B. C. D.7.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.8.如图,在⊙O中,弦AB为8mm,圆心O到AB的距离为3mm,则⊙O的半径等于()A.3mm B.4mm C.5mm D.8mm9.如图,线段与相交于点,连接,且,要使,应添加一个条件,不能证明的是()A. B. C. D.10.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是()A.25° B.30° C.35° D.40°11.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A. B.C. D.12.下列事件中,是必然事件的是()A.购买一张彩票,中奖 B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是180°二、填空题(每题4分,共24分)13.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.14.如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___15.关于的一元二次方程有两个不相等的实数根,则的取值范围是__________.16.如图,中,,,将斜边绕点逆时针旋转至,连接,则的面积为_______.17.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点(1,0)作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的坐标为_________.18.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是______.三、解答题(共78分)19.(8分)某市计划建设一项水利工程,工程需要运送的土石方总量为米3,某运输公司承办了这项工程运送土石方的任务.(1)完成运送任务所需的时间(单位:天)与运输公司平均每天的工作量(单位:米3/天)之间具有怎样的函数关系?(2)已知这个运输公司现有50辆卡车,每天最多可运送土石方米3,则该公司完成全部运输任务最快需要多长时间?(3)运输公司连续工作30天后,天气预报说两周后会有大暴雨,公司决定10日内把剩余的土石方运完,平均每天至少增加多少辆卡车?20.(8分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.21.(8分)某食品代理商向超市供货,原定供货价为元/件,超市售价为元/件.为打开市场超市决定在第一季度对产品打八折促销,第二季度再回升个百分点,为保证超市利润,代理商承诺在供货价基础上向超市返点试问平均每季度返多少个百分点,半年后超市的销售利润回到开始供货时的水平?22.(10分)如图,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的长.23.(10分)阅读下列材料,完成相应的学习任务:如图(1)在线段AB上找一点C,C把AB分为AC和BC两条线段,其中AC>BC.若AC,BC,AB满足关系AC2=BC•AB.则点C叫做线段AB的黄金分割点,这时=≈0.618,人们把叫做黄金分割数,我们可以根据图(2)所示操作方法我到线段AB的黄金分割点,操作步骤和部分证明过程如下:第一步,以AB为边作正方形ABCD.第二步,以AD为直径作⊙F.第三步,连接BF与⊙F交于点G.第四步,连接DG并延长与AB交于点E,则E就是线段AB的黄金分割点.证明:连接AG并延长,与BC交于点M.∵AD为⊙F的直径,∴∠AGD=90°,∵F为AD的中点,∴DF=FG=AF,∴∠3=∠4,∠5=∠6,∵∠2+∠5=90°,∠5+∠4=90°,∴∠2=∠4=∠3=∠1,∵∠EBG=∠GBA,∴△EBG∽△GBA,∴=,∴BG2=BE•AB…任务:(1)请根据上面操作步骤与部分证明过程,将剩余的证明过程补充完整;(提示:证明BM=BG=AE)(2)优选法是一种具有广泛应用价值的数学方法,优选法中有一种0.618法应用了黄金分割数.为优选法的普及作出重要贡献的我国数学家是(填出下列选项的字母代号)A.华罗庚B.陈景润C.苏步青24.(10分)在平面直角坐标系中,抛物线经过点,.(1)求这条抛物线所对应的函数表达式.(2)求随的增大而减小时的取值范围.25.(12分)关于x的一元二次方程(k+1)x2﹣3x﹣3k﹣2=0有一个根为﹣1,求k的值及方程的另一个根.26.如图,已知一次函数与反比例函数的图像相交于点,与轴相交于点.(1)求的值和的值以及点的坐标;(2)观察反比例函数的图像,当时,请直接写出自变量的取值范围;(3)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;(4)在y轴上是否存在点,使的值最小?若存在,请求出点的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.详解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选B.点睛:此题主要考查了在数轴上表示数的方法,以及数轴的特征和应用,要熟练掌握.2、B【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【题目详解】x2+6x+m=0,x2+6x=-m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为.故选:B.【题目点拨】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.3、A【分析】连接BO,根据垂径定理得出BD,在△BOD中利用勾股定理解出OD,从而得出AD,在△ABD中利用勾股定理解出AB即可.【题目详解】连接OB,∵AO⊥BC,AO过O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【题目点拨】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质.4、A【分析】根据扇形面积公式计算即可.【题目详解】解:设扇形的半径为为R,由题意得,解得R=4.故选A.【题目点拨】本题考查了扇形的面积公式,R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长.那么扇形的面积为:.5、C【分析】根据一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.【题目详解】解:A、y=2x,正比例函数,k>0,故y随着x增大而增大,错误;B、y=x+1,一次函数,k>0,故y随着x增大而增大,错误;C、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,正确;D、y=x2,当x>0时,图象在对称轴右侧,y随着x的增大而增大,错误.故选C.【题目点拨】本题考查二次函数的性质;一次函数的性质;反比例函数的性质.6、B【分析】如图,连接CN.想办法求出CN,CM,根据MN≥CN−CM即可解决问题.【题目详解】如图,连接CN.在Rt△ABC中,∵AC=4,∠B=30°,∴AB=2AC=2,BC=AC=3,∵CM=MB=BC=,∵A1N=NB1,∴CN=A1B1=,∵MN≥CN−CM,∴MN≥,即MN≥,∴MN的最小值为,故选:B.【题目点拨】本题考查解直角三角形,旋转变换等知识,解题的关键是用转化的思想思考问题,属于中考常考题型.7、D【分析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【题目详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的长为,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=故选:D.【题目点拨】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.8、C【分析】连接OA,根据垂径定理,求出AD,根据勾股定理计算即可.【题目详解】连接OA,∵OD⊥AB,∴AD=AB=4,由勾股定理得,OA==5,故选C.【题目点拨】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9、D【分析】根据三角形全等的判定定理逐项判断即可.【题目详解】A、在和中,则,此项不符题意B、在和中,则,此项不符题意C、在和中,则,此项不符题意D、在和中,,但两组相等的对应边的夹角和未必相等,则不能证明,此项符合题意故选:D.【题目点拨】本题考查了三角形全等的判定定理,熟记各定理是解题关键.10、B【题目详解】∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B.11、A【分析】连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.【题目详解】连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A.【题目点拨】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.12、D【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【题目详解】A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【题目点拨】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.二、填空题(每题4分,共24分)13、120°【解题分析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【题目详解】∵侧面积为3π,∴圆锥侧面积公式为:S=πrl=π×1×l=3π,解得:l=3,∴扇形面积为3π=,解得:n=120,∴侧面展开图的圆心角是120度.故答案为:120°.【题目点拨】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.14、【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【题目详解】解:连接BE
∵DE:EC=3:1
∴设DE=3k,EC=k,则CD=4k
∵ABCD是平行四边形
∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4
∵DE:EC=3:1
∴S△BDE:S△BEC=3:1
设S△BDE=3a,S△BEC=a
则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19
故答案为:.【题目点拨】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.15、【分析】根据根的判别式即可求出答案;【题目详解】解:由题意可知:解得:故答案为:【题目点拨】本题考查一元二次方程根的判别式,解题的关键是熟练掌握一元二次方程根的判别式并应用.16、8【分析】过点B'作B'E⊥AC于点E,由题意可证△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面积.【题目详解】解:如图:过点B'作B'E⊥AC于点E∵旋转∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案为:.【题目点拨】本题考查了旋转的性质,全等三角形的判定和性质,利用旋转的性质解决问题是本题的关键.17、【解题分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.【题目详解】解:当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=-x=2时,x=-2,
∴点A2的坐标为(-2,2);
同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),
A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(-2504×2+1,-2504×2+2),即(-21009,-21010).
故答案为(-21009,-21010).【题目点拨】本题考查一次函数图象上点的坐标特征、正比例函数的图象以及规律型中点的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”是解题的关键.18、3-4【解题分析】试题分析:根据韦达定理可得:·==3,则方程的另一根为3;根据韦达定理可得:+=-=4=-m,则m=-4.考点:方程的解三、解答题(共78分)19、(1);(2)该公司完成全部运输任务最快需要50天;(3)每天至少增加50辆卡车.【分析】(1)根据“平均每天的工作量×工作时间=工作总量”即可得出结论;(2)根据“工作总量÷平均每天的工作量=工作时间”即可得出结论;(3)先求出30天后剩余的工作量,然后利用剩余10天每天的工作量÷每辆汽车每天的工作量即可求出需要多少辆汽车,从而求出结论.【题目详解】解:(1)由题意得:,变形,得;(2)当时,,答:该公司完成全部运输任务最快需要50天.(3)辆,辆答:每天至少增加50辆卡车.【题目点拨】此题考查的是反比例函数的应用,掌握实际问题中的等量关系是解决此题的关键.20、(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1)添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【题目详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【题目点拨】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.21、代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【分析】设代理商平均每个季度向超市返个百分点,根据题意列出方程,解方程,即可得到答案.【题目详解】解:设代理商平均每个季度向超市返个百分点,由题意得:,解得:(舍去).∴代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【题目点拨】本题考查了一元二次方程的应用,解题的关键是找到题目的等量关系,列出方程.22、DE=8.【分析】先根据角平分线的性质和平行线的性质证得,再根据平行线分线段成比例即可得.【题目详解】如图,CD平分又,即故DE的长为8.【题目点拨】本题考查了角平分线的性质、平行线的性质、等腰三角形的性质、平行线分线段成比例,通过等角对等边证出是解题关键.23、(1)见解析;(2)A【分析】(1)利用相全等三角形的判定和性质、相似三角形的性质以及平行线的性质证明BM=BG=AE即可解决问题.
(2)为优选法的普及作出重要贡献的我国数学家是华罗庚.【题目详解】(1)补充证明:∵∠2=∠4,∠ABM=∠DAE,AB=AD,∴△ABM≌△DAE(ASA),∴BM=AE,∵AD∥BC,∴∠7=∠5=∠6=∠8,∴BM=BG=AE,∴AE2=BE•AB,∴点E是线段AB的黄金分割点.(2)优选法是一种具有广泛应用价值的数学方法,优选法中有一种0.618法应用了黄金分割数.为优选法的普及作出重要贡献的我国数学家是华罗庚.故答案为A.【题目点拨】本题考查作图-相似变换,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,正方形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考创新题型.24、(1),(2)随的增大而减小时.【解题分析】(1)把,代入解析式,解方程组求出a、b的值即可;(2)根据(1)中所得解析式可得对称轴,a>0,在对称轴左侧y随的增大而减小根据二次函数的性质即可得答案.【题目详解】(1)∵抛物线经过点,.∴解得∴这条抛物线所对应的函数表达式为.(2)∵抛物线的对称轴为直线,∵,∴图象开口向上,∴y随的增大而减小时x<1.【题目点拨】本题考查待定系数法确定二次函数解析式及二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年长尾词植入合同协议标题拟定如下
- 家政月嫂培训课件班
- 培训讲师课件分级表格
- 培训人员安全路线课件
- 品质意识培训资料展示
- 2024年春晓原文翻译及赏析
- 体外生命支持脱机与拔管2026
- 化妆品连锁知识培训课件
- 化妆品化学知识课件
- 2024年化工厂实习总结
- 2023年生产车间各类文件汇总
- WORD版A4横版密封条打印模板(可编辑)
- 2013标致508使用说明书
- YD5121-2010 通信线路工程验收规范
- 评价实验室6S检查标准
- 工程质量不合格品判定及处置实施细则
- 外观检验作业标准规范
- GB/T 308.1-2013滚动轴承球第1部分:钢球
- GB/T 18993.1-2020冷热水用氯化聚氯乙烯(PVC-C)管道系统第1部分:总则
- GA/T 798-2008排油烟气防火止回阀
- 中医舌、脉象的辨识与临床应用 点击吸下载
评论
0/150
提交评论