版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter1
DataandStatisticsDataDataSourcesDescriptiveStatisticsStatisticalInferenceComputersandStatisticalAnalysisDataMiningEthicalGuidelinesforStatisticalPracticeApplicationsinBusinessandEconomicsStatisticsStatisticsThetermstatisticscanrefertonumericalfactssuchasaverages,medians,percents,andindexnumbersthathelpusunderstandavarietyofbusinessandeconomicsituations.Statisticscanalsorefertotheartandscienceofcollecting,analyzing,presenting,andinterpretingdata.Applicationsin
BusinessandEconomicsAccounting
EconomicsPublicaccountingfirmsusestatisticalsamplingprocedureswhenconductingauditsfortheirclients.Economistsusestatisticalinformationinmakingforecastsaboutthefutureoftheeconomyorsomeaspectofit.Financialadvisorsuseprice-earningsratiosanddividendyieldstoguidetheirinvestmentadvice.FinanceApplicationsin
BusinessandEconomicsAvarietyofstatisticalqualitycontrolchartsareusedtomonitortheoutputofaproductionprocess.
ProductionElectronicpoint-of-salescannersatretailcheckoutcountersareusedtocollectdataforavarietyofmarketingresearchapplications.MarketingDataandDataSets
Dataarethefactsandfigurescollected,analyzed,andsummarizedforpresentationandinterpretation.Allthedatacollectedinaparticularstudyarereferredtoasthedatasetforthestudy.
Elementsaretheentitiesonwhichdataarecollected.Avariableisacharacteristicofinterestfortheelements.Thesetofmeasurementsobtainedforaparticularelementiscalledanobservation.Thetotalnumberofdatavaluesinacompletedatasetisthenumberofelementsmultipliedbythenumberofvariables.Elements,Variables,andObservationsAdatasetwithnelementscontainsnobservations.StockAnnualEarn/ExchangeSales($M)Share($)Data,DataSets,
Elements,Variables,andObservationsCompanyDataram EnergySouthKeystoneLandCarePsychemedicsNQ 73.10 0.86N 74.00 1.67N 365.70 0.86NQ 111.40 0.33N 17.60 0.13VariablesElementNamesDataSetObservationScalesofMeasurementThescaleindicatesthedatasummarizationandstatisticalanalysesthataremostappropriate.Thescaledeterminestheamountofinformationcontainedinthedata.Scalesofmeasurementinclude:NominalOrdinalIntervalRatioScalesofMeasurementNominalAnonnumericlabelornumericcodemaybeused.Dataarelabelsornamesusedtoidentifyanattributeoftheelement.Example:StudentsofauniversityareclassifiedbytheschoolinwhichtheyareenrolledusinganonnumericlabelsuchasBusiness,Humanities,Education,andsoon.Alternatively,anumericcodecouldbeusedfortheschoolvariable(e.g.1denotesBusiness,2denotesHumanities,3denotesEducation,andsoon).ScalesofMeasurementNominalScalesofMeasurementOrdinalAnonnumericlabelornumericcodemaybeused.Thedatahavethepropertiesofnominaldataandtheorderorrankofthedataismeaningful.ScalesofMeasurementOrdinalExample:StudentsofauniversityareclassifiedbytheirclassstandingusinganonnumericlabelsuchasFreshman,Sophomore,Junior,orSenior.Alternatively,anumericcodecouldbeusedfortheclassstandingvariable(e.g.1denotesFreshman,2denotesSophomore,andsoon).ScalesofMeasurementIntervalIntervaldataarealwaysnumeric.Thedatahavethepropertiesofordinaldata,andtheintervalbetweenobservationsisexpressedintermsofafixedunitofmeasure.ScalesofMeasurementIntervalExample:MelissahasanSATscoreof1885,whileKevinhasanSATscoreof1780.Melissascored105pointsmorethanKevin.ScalesofMeasurementRatioThedatahaveallthepropertiesofintervaldataandtheratiooftwovaluesismeaningful.Variablessuchasdistance,height,weight,andtimeusetheratioscale.Thisscalemustcontainazerovaluethatindicatesthatnothingexistsforthevariableatthezeropoint.ScalesofMeasurementRatioExample:Melissa’scollegerecordshows36credithoursearned,whileKevin’srecordshows72credithoursearned.KevinhastwiceasmanycredithoursearnedasMelissa.Datacanbefurtherclassifiedasbeingcategoricalorquantitative.Thestatisticalanalysisthatisappropriatedependsonwhetherthedataforthevariablearecategoricalorquantitative.Ingeneral,therearemorealternativesforstatisticalanalysiswhenthedataarequantitative.CategoricalandQuantitativeDataCategoricalData
LabelsornamesusedtoidentifyanattributeofeachelementOftenreferredtoasqualitativedataUseeitherthenominalorordinalscaleofmeasurementCanbeeithernumericornonnumericAppropriatestatisticalanalysesareratherlimitedQuantitativeDataQuantitativedataindicatehowmanyorhowmuch:
discrete,ifmeasuringhowmany
continuous,ifmeasuringhowmuchQuantitativedataarealwaysnumeric.Ordinaryarithmeticoperationsaremeaningfulforquantitativedata.ScalesofMeasurementCategoricalQuantitativeNumericNumericNon-numericDataNominalOrdinalNominalOrdinalIntervalRatioCross-SectionalData
Cross-sectionaldataarecollectedatthesameorapproximatelythesamepointintime.
Example:datadetailingthenumberofbuildingpermitsissuedinFebruary2010ineachofthecountiesofOhioTimeSeriesData
Timeseriesdataarecollectedoverseveraltimeperiods.
Example:datadetailingthenumberofbuildingpermitsissuedinLucasCounty,Ohioineachofthelast36monthsTimeSeriesDataU.S.AveragePricePerGallonForConventionalRegularGasolineSource:EnergyInformationAdministration,U.S.DepartmentofEnergy,May2009.DataSourcesExistingSources
Internalcompanyrecords–almostanydepartmentBusinessdatabaseservices–DowJones&Co.Governmentagencies-U.S.DepartmentofLaborIndustryassociations–TravelIndustryAssociationofAmericaSpecial-interestorganizations–GraduateManagementAdmissionCouncilInternet–moreandmorefirmsRecordSomeoftheDataAvailableDataSourcesDataAvailableFromInternalCompanyRecords
EmployeerecordsProductionrecordsInventoryrecordsSalesrecordsCreditrecordsCustomerprofilename,address,socialsecuritynumberpartnumber,quantityproduced,directlaborcost,materialcostpartnumber,quantityinstock,reorderlevel,economicorderquantityproductnumber,salesvolume,salesvolumebyregioncustomername,creditlimit,accountsreceivablebalanceage,gender,income,householdsizeGovernmentAgencySomeoftheDataAvailableDataSourcesDataAvailableFromSelectedGovernmentAgenciesCensusBureauFederalReserveBoardOfficeofMgmt.&Budget/ombDepartmentofCommerceBureauofLaborStatisticsPopulationdata,numberofhouseholds,householdincomeDataonmoneysupply,exchangerates,discountratesDataonrevenue,expenditures,debtoffederalgovernmentDataonbusinessactivity,valueofshipments,profitbyindustryCustomerspending,unemploymentrate,hourlyearnings,safetyrecordDataSourcesStatisticalStudies-ExperimentalInexperimentalstudiesthevariableofinterestisfirstidentified.Thenoneormoreothervariablesareidentifiedandcontrolledsothatdatacanbeobtainedabouthowtheyinfluencethevariableofinterest.Thelargestexperimentalstudyeverconductedisbelievedtobethe1954PublicHealthServiceexperimentfortheSalkpoliovaccine.NearlytwomillionU.S.children(grades1-3)wereselected.StatisticalStudies-ObservationalDataSourcesInobservational(nonexperimental)studiesnoattemptismadetocontrolorinfluencethevariablesofinterest.asurveyisagoodexampleStudiesofsmokersandnonsmokersareobservationalstudiesbecauseresearchersdonotdetermineorcontrolwhowillsmokeandwhowillnotsmoke.DataAcquisitionConsiderationsTimeRequirementCostofAcquisitionDataErrorsSearchingforinformationcanbetimeconsuming.Informationmaynolongerbeusefulbythetimeitisavailable.Organizationsoftenchargeforinformationevenwhenitisnottheirprimarybusinessactivity.Usinganydatathathappentobeavailableorwereacquiredwithlittlecarecanleadtomisleadinginformation.DescriptiveStatisticsMostofthestatisticalinformationinnewspapers,magazines,companyreports,andotherpublicationsconsistsofdatathataresummarizedandpresentedinaformthatiseasytounderstand.Suchsummariesofdata,whichmaybetabular,graphical,ornumerical,arereferredtoasdescriptivestatistics.Example:HudsonAutoRepair ThemanagerofHudsonAutowouldliketohaveabetterunderstandingofthecostofpartsusedintheenginetune-upsperformedinhershop.Sheexamines50customerinvoicesfortune-ups.Thecostsofparts,roundedtothenearestdollar,arelistedonthenextslide.Example:HudsonAutoRepairSampleofPartsCost($)for50Tune-upsTabularSummary:
FrequencyandPercentFrequency50-5960-6970-7980-8990-99100-109
2131677
550426321414
10100(2/50)100Parts
Cost($)
FrequencyPercentFrequencyExample:HudsonAutoGraphicalSummary:Histogram24681012141618PartsCost($)Frequency50-5960-6970-79
80-8990-99100-110Tune-upPartsCostExample:HudsonAutoNumericalDescriptiveStatisticsHudson’saveragecostofparts,basedonthe50tune-upsstudied,is$79(foundbysummingthe50costvaluesandthendividingby50).Themostcommonnumericaldescriptivestatisticistheaverage(ormean).Theaveragedemonstratesameasureofthecentraltendency,orcentrallocation,ofthedataforavariable.StatisticalInference
PopulationSampleStatisticalinferenceCensusSamplesurvey-thesetofallelementsofinterestinaparticularstudy-asubsetofthepopulation-theprocessofusingdataobtainedfromasampletomakeestimatesandtesthypothesesaboutthecharacteristicsofapopulation-collectingdatafortheentirepopulation-collectingdataforasampleProcessofStatisticalInference1.Populationconsistsofalltune-ups.Averagecostofpartsisunknown.2.Asampleof50enginetune-upsisexamined.Thesampledataprovideasampleaveragepartscostof$79pertune-up.4.Thesampleaverageisusedtoestimatethepopulationaverage.ComputersandStatisticalAnalysisStatisticiansoftenusecomputersoftwaretoperformthestatisticalcomputationsrequiredwithlargeamountsofdata.Tofacilitatecomputerusage,manyofthedatasetsinthisbookareavailableonthewebsitethataccompaniesthetext.ThedatafilesmaybedownloadedineitherMinitaborExcelformats.Also,theExceladd-inStatToolscanbedownloadedfromthewebsite.Chapterendingappendicescoverthestep-by-stepproceduresforusingMinitab,Excel,andStatTools.DataWarehousingOrganizationsobtainlargeamountsofdataonadailybasisbymeansofmagneticcardreaders,barcodescanners,pointofsaleterminals,andtouchscreenmonitors.Wal-Martcapturesdataon20-30milliontransactionsperday.Visaprocesses6,800paymenttransactionspersecond.Capturing,storing,andmaintainingthedata,referredtoasdatawarehousing,isasignificantundertaking.DataMiningAnalysisofthedatainthewarehousemightaidindecisionsthatwillleadtonewstrategiesandhigherprofitsfortheorganization.Usingacombinationofproceduresfromstatistics,mathematics,andcomputerscience,analysts“mine
thedata”toconvertitintousefulinformation.Themosteffectivedataminingsystemsuseautomatedprocedurestodiscoverrelationshipsinthedataandpredictfutureoutcomes,…promptedbyonlygeneral,evenvague,queriesbytheuser.DataMiningApplicationsThemajorapplicationsofdatamininghavebeenmadebycompanieswithastrongconsumerfocussuchasretail,financial,andcommunicationfirms.Dataminingisusedtoidentifyrelatedproductsthatcustomerswhohavealreadypurchasedaspecificproductarealsolikelytopurchase(andthenpop-upsareusedtodrawattentiontothoserelatedproducts).Asanotherexample,dataminingisusedtoidentifycustomerswhoshouldreceivespecialdiscountoffersbasedontheirpastpurchasingvolumes.DataMiningRequirementsStatisticalmethodologysuchasmultipleregression,logisticregression,andcorrelationareheavilyused.Alsoneededarecomputersciencetechnologiesinvolvingartificialintelligenceandmachinelearning.Asignificantinvestmentintimeandmoneyisrequiredaswell.DataMiningModelReliabilityFindingastatisticalmodelthatworkswellforaparticularsampleofdatadoesnotnecessarilymeanthatitcanbereliablyappliedtootherdata.Withtheenormousamountofdataavailable,the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交流教师管理考核制度
- 幼儿园办公考核制度
- 初中学生会考核制度
- 银行机构目标考核制度
- 违反计划生产考核制度
- 家暴纳入干部考核制度
- 猪肉店考核制度细则
- 金融消费投诉考核制度
- 工作室联盟考核制度
- 兰湘子员工考核制度
- 2026年及未来5年市场数据中国金属铍行业市场竞争格局及发展趋势预测报告
- 2025-2030中国动物狂犬病疫苗行业发展现状及趋势前景分析研究报告
- 微生物菌剂培训课件
- 湖北省鄂东南教育联盟2025-2026学年高三上学期期中暨一模语文试卷及答案
- 第04讲 数与式综合提升卷(原卷版)-2025年中考数学一轮复习(全国版)
- 会议纪要标准化撰写模板
- 项目投资协议书范本合同
- 第二章拟投入施工机械设备
- 王庄矿5.0Mt-a新井设计 - 厚煤层回采巷道支护技术研究
- 心脏手术血糖管理
- 房地产企业总经理年度经营目标责任书模板
评论
0/150
提交评论