2024届福建省“超级全能生”高一数学第一学期期末复习检测模拟试题含解析_第1页
2024届福建省“超级全能生”高一数学第一学期期末复习检测模拟试题含解析_第2页
2024届福建省“超级全能生”高一数学第一学期期末复习检测模拟试题含解析_第3页
2024届福建省“超级全能生”高一数学第一学期期末复习检测模拟试题含解析_第4页
2024届福建省“超级全能生”高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省“超级全能生”高一数学第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数的零点所在的区间为,则整数的值为()A. B.C. D.2.已知,,且,,则的值是A. B.C. D.3.设若,,,则()A. B.C. D.4.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.25.在中,若,且,则的形状为A.等边三角形 B.钝角三角形C.锐角三角形 D.等腰直角三角形6.设,,则()A.且 B.且C.且 D.且7.七巧板,又称七巧图、智慧板,是中国古代劳动人民的发明,其历史至少可以追溯到公元前一世纪,到了明代基本定型,于明、清两代在民间广泛流传.某同学用边长为4dm的正方形木板制作了一套七巧板,如图所示,包括5个等腰直角三角形,1个正方形和1个平行四边形.若该同学从5个三角形中任取出2个,则这2个三角形的面积之和不小于另外3个三角形面积之和的概率是()A. B.C. D.8.已知f(x)、g(x)均为[﹣1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)9.下列函数中,既是奇函数又在定义域上是增函数的为A. B.C. D.10.已知函数,且f(5a﹣2)>﹣f(a﹣2),则a的取值范围是()A.(0,+∞) B.(﹣∞,0)C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则___________.12.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.13.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.14.若正数a,b满足,则的最大值为______.15.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201216.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知方程(1)若此方程表示圆,求的取值范围;(2)若此方程表示圆,且点在圆上,求过点的圆的切线方程18.已知角在第二象限,且(1)求的值;(2)若,且为第一象限角,求的值19.已知全集.(1)求;(2)求.20.若函数在定义域内存在实数,使得成立,则称函数有“飘移点”Ⅰ试判断函数及函数是否有“飘移点”并说明理由;Ⅱ若函数有“飘移点”,求a的取值范围21.已知函数.(1)当时,求方程的解;(2)若,不等式恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】结合函数单调性,由零点存在性定理可得解.【题目详解】由为增函数,且,可得零点所在的区间为,所以.故选:C.2、B【解题分析】由,得,所以,,得,,所以,从而有,.故选:B3、A【解题分析】将分别与比较大小,即可判断得三者的大小关系.【题目详解】因为,,,所以可得的大小关系为.故选:A4、B【解题分析】将写成分段函数,画出函数图象数形结合,即可求得结果.【题目详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【题目点拨】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.5、D【解题分析】由条件可得A为直角,结合,可得解.【题目详解】,=,又,为等腰直角三角形,故选D.【题目点拨】本题考查了向量数量积表示两个向量的垂直关系,考查了三角形的形状,属于基础题.6、B【解题分析】容易得出,,即得出,,从而得出,【题目详解】,.又,即,,,故选B.【题目点拨】本题考查对数函数单调性的应用,求解时注意总结规律,即对数的底数和真数同时大于1或同时大于0小于1,函数值大于0;若一个大于1,另一个大于0小于1,函数值小于07、D【解题分析】先逐个求解所有5个三角形的面积,再根据要求计算概率.【题目详解】如图所示,,,,,的面积分别为,,将,,,,分别记为,,,,,从这5个三角形中任取出2个,则样本空间,共有10个样本点记事件表示“从5个三角形中任取出2个,这2个三角形的面积之和不小于另外3个三角形面积之和”,则事件包含的样本点为,,,共3个,所以故选:D8、C【解题分析】设h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出结论.【题目详解】设h(x)=f(x)﹣g(x),则h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零点在区间(0,1),故选:C.【题目点拨】思路点睛:该题考查的是有关零点存在性定理的应用问题,解题思路如下:(1)先构造函数h(x)=f(x)﹣g(x);(2)利用题中所给的有关函数值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零点存在性定理,得到结果.9、D【解题分析】选项,在定义域上是增函数,但是是非奇非偶函数,故错;选项,是偶函数,且在上是增函数,在上是减函数,故错;选项,是奇函数且在和上单调递减,故错;选项,是奇函数,且在上是增函数,故正确综上所述,故选10、D【解题分析】由定义可求函数的奇偶性,进而将所求不等式转化为f(5a﹣2)>f(﹣a+2),结合函数的单调性可得关于a的不等式,从而可求出a的取值范围.【题目详解】解:根据题意,函数,其定义域为R,又由f(﹣x)f(x),f(x)为奇函数,又,函数y=9x+1为增函数,则f(x)在R上单调递增;f(5a﹣2)>﹣f(a﹣2)⇒f(5a﹣2)>f(﹣a+2)⇒5a﹣2>﹣a+2,解可得,故选:D.【题目点拨】关键点睛:本题的关键是由奇偶性转化已知不等式,再求出函数单调性求出关于a的不等式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由幂函数的解析式的形式可求出和的值,再将点代入可求的值,即可求解.【题目详解】因为是幂函数,所以,,又的图象过点,所以,解得,所以.故答案为:.12、2【解题分析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【题目详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.13、##【解题分析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【题目详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:14、##0.25【解题分析】根据等式关系进行转化,构造函数,判断函数的单调性,利用转化法转化为一元二次函数进行求解即可【题目详解】由得,设,则在上为增函数,则,等价为(a),则,则,,当时,有最大值,故答案为:15、【解题分析】根据表格从里层往外求即可.【题目详解】解:由表可知,.故答案为:.16、【解题分析】化简函数的解析式,解方程,即可得解.【题目详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)或【解题分析】(1)若此方程表示圆,则,即可得解;(2)代入点得,从而得圆心半径,由已知得所求圆的切线斜率存在,设为,切线方程为:,由圆心到直线距离等于半径列方程求解即可.试题解析:(1)若此方程表示圆,则或(2)由点在圆,代入圆的方程得,此时圆心,半径,由已知得所求圆的切线斜率存在,设为,切线方程为:或,∴切线方程为:或.18、(1)(2)【解题分析】(1)利用同角三角函数关系可求解得,利用诱导公式化简原式可得原式,代入即得解;(2)利用同角三角函数关系可得,又,利用两角差的正弦公式,即得解【小问1详解】因为,且在第二象限,故,所以,原式【小问2详解】由题意有故,19、(1)(2)【解题分析】(1)根据交集计算可得.(2)根据补集与并集的计算可得.【小问1详解】由己知,所以【小问2详解】∵,所以,所以.20、(Ⅰ)函数有“飘移点”,函数没有“飘移点”.证明过程详见解析(Ⅱ)【解题分析】Ⅰ按照“飘移点”的概念,只需方程有根即可,据此判断;Ⅱ由题得,化简得,可得,可求>,解得a范围【题目详解】Ⅰ函数有“飘移点”,函数没有“飘移点”,证明如下:设在定义域内有“飘移点”,所以:,即:,解得:,所以函数在定义域内有“飘移点”是0;设函数有“飘移点”,则,即由此方程无实根,与题设矛盾,所以函数没有飘移点Ⅱ函数的定义域是,因为函数有“飘移点”,所以:,即:,化简可得:,可得:,因为,所以:,所以:,因为当时,方程无解,所以,所以,因为函数的定义域是,所以:,即:,因为,所以,即:,所以当时,函数有“飘移点”【题目点拨】本题考查了函数的方程与函数间的关系,即利用函数思想解决方程根的问题,利用方程思想解决函数的零点问题,由转化为关于方程在有解是本题关键.21、(1)或;(2)【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论