版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水地区2024届高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④2.已知定义在上的偶函数,在上为减函数,且,则不等式的解集是()A. B.C. D.3.已知集合,集合B满足,则满足条件的集合B有()个A.2 B.3C.4 D.14.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.5.下列函数中既是奇函数,又是减函数的是()A. B.C D.6.已知指数函数(,且),且,则的取值范围()A. B.C. D.7.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至多有1人投中的概率为()A. B.C. D.8.如图所示,已知全集,集合,则图中阴影部分表示的集合为()A. B.C. D.9.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.10.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的半径为4,圆心角为,则扇形的面积为___________.12.___________13.函数的定义域是_____________14.若不等式对一切恒成立,则a的取值范围是______________.15.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)16.函数,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线的倾斜角为且经过点.(1)求直线的方程;(2)求点关于直线的对称点的坐标.18.设全集,集合,,.(1)若,求的值;(2)若,求实数的取值范围.19.(1)计算:.(2)化简:.20.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.21.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【题目详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D2、D【解题分析】根据函数的性质,画出函数的图象,数形结合求出解集【题目详解】由题意,画出的图象如图,等价于,或,由图可知,不等式的解集为故选:D3、C【解题分析】写出满足题意的集合B,即得解.【题目详解】因为集合,集合B满足,所以集合B={3},{1,3},{2,3},{1,2,3}.故选:C【题目点拨】本题主要考查集合的并集运算,意在考查学生对这些知识的理解掌握水平.4、C【解题分析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【题目详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C5、A【解题分析】根据对数、指数、一次函数的单调性判断BCD,根据定义判断的奇偶性.【题目详解】因为在定义域内都是增函数,所以BCD错误;因为,所以函数为奇函数,且在上单调递减,A正确.故选:A6、A【解题分析】根据指数函数的单调性可解决此题【题目详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A7、C【解题分析】根据题意,列出所有可能,结合古典概率,即可求解.【题目详解】甲、乙、丙3人投中与否的所有情况为:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8种,其中至多有1人投中的有4种,故所求概率为故选:C.8、A【解题分析】根据文氏图表示的集合求得正确答案.【题目详解】文氏图表示集合为,所以.故选:A9、C【解题分析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【题目详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.10、C【解题分析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【题目详解】解:因为角的终边与单位圆相交于点,则,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【题目详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:12、【解题分析】利用、两角和的正弦展开式进行化简可得答案.【题目详解】故答案为:.13、.【解题分析】由题意,要使函数有意义,则,解得:且.即函数定义域为.考点:函数的定义域.14、【解题分析】先讨论时不恒成立,再根据二次函数的图象开口方向、判别式进行求解.【题目详解】当时,则化为(不恒成立,舍),当时,要使对一切恒成立,需,即,即a的取值范围是.故答案为:.15、②③【解题分析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【题目详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③16、【解题分析】先求的值,再求的值.【题目详解】由题得,所以.故答案为【题目点拨】本题主要考查指数对数运算和分段函数求值,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x+y-2=0;(2)(-2,-1)【解题分析】(1)由题意得直线的斜率为,∴直线的方程为,即.(2)设点,由题意得解得∴点的坐标为.18、(1)或;(2).【解题分析】(1)因为,故,从而或者,故或(舎)或.(2)计算得,故,又,所以的取值范围是.解析:(1)∵,,,∴或,∴或或,经验知或.(2),,由,得,又及与集合中元素相异矛盾,所以的取值范围是.19、(1);(2)【解题分析】(1)根据分数指数幂及对数的运算法则计算可得;(2)利用诱导公式及特殊值的三角函数值计算可得;【题目详解】解:(1)(2)20、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解题分析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为,即,所以函数的最小正周期,令,,解得,,所以函数的单调递增区间为,;【小问2详解】解:因为,所以,所以当,即时函数取得最小值,即,当,即时函数取得最大值,即;21、(1)4;(2)见解析;(3)不存在.【解题分析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【题目详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 检验员培训 (经典)
- 学校餐厅入股合同范本
- 建筑垃圾保洁合同范本
- 家庭护理劳动合同范本
- 房产销售公司合同范本
- 房屋购买定金合同范本
- 应急用品租赁合同范本
- 硫和二氧化硫课件-05-06年高一下学期化学人教版
- 房子居间中介合同范本
- 店铺员工续签合同范本
- 2025至2030中国电地暖系统行业市场现状分析及竞争格局与投资发展报告
- 互联网金融浪潮下A银行网点智能轻型化转型之路
- 《肺炎的CT表现》课件
- 胸科手术麻醉管理专家共识
- 物联网智能家居设备智能控制手册
- (二模)东北三省三校2025年高三第二次联合模拟考试 英语试卷(含答案解析)
- 福建省泉州市2024-2025学年高一上学期期末质量监测生物试题(原卷版+解析版)
- 10千伏环网柜(箱)标准化设计方案 (2023 版)
- 2025年湖北省技能高考(建筑技术类)《建筑材料与检测》模拟练习试题库(含答案)
- 伪装防护基础知识
- 工程后评价报告
评论
0/150
提交评论