版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考物理热身圆含解析2024届高一上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象是()A. B.C. D.2.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与3.在平行四边形ABCD中,E是CD中点,F是BE中点,若+=m+n,则()A., B.,C., D.,4.图(1)是某条公共汽车线路收支差额关于乘客量的图象,图(2)、(3)是由于目前本条路线亏损,公司有关人员提出的两种扭亏为盈的建议,则下列说法错误的是()A.图(1)的点的实际意义为:当乘客量为0时,亏损1个单位B.图(1)的射线上的点表示当乘客量小于3时将亏损,大于3时将盈利C.图(2)的建议为降低成本而保持票价不变D.图(3)的建议为降低成本的同时提高票价5.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.6.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:)()A.6 B.7C.8 D.98.已知集合则角α的终边落在阴影处(包括边界)的区域是()A. B.C. D.9.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.10.若,则()A. B.-3C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则此函数的解析式为______12.若,,则等于_________.13.已知,且,则______14.等于_______.15.已知圆:,为圆上一点,、、,则的最大值为______.16.函数的定义域是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象在定义域(0,+∞)上连续不断,若存在常数T>0,使得对于任意的x>0,恒成立,称函数满足性质P(T).(1)若满足性质P(2),且,求的值;(2)若,试说明至少存在两个不等的正数T1、T2,同时使得函数满足性质P(T1)和P(T2);(3)若函数满足性质P(T),求证:函数存在零点.18.已知tanα=,求下列各式的值(1)+;(2);(3)sin2α-2sinαcosα+4cos2α.19.已知函数,只能同时满足下列三个条件中的两个:①的解集为;②;③最小值为(1)请写出这两个条件的序号,求的解析式;(2)求关于的不等式的解集.20.已知函数同时满足下列四个条件中的三个:①当时,函数值为0;②的最大值为;③的图象可由的图象平移得到;④函数的最小正周期为.(1)请选出这三个条件并求出函数的解析式;(2)对于给定函数,求该函数的最小值.21.定义在D上的函数,如果满足:存在常数,对任意,都有成立,则称是D上的有界函数,其中M称为函数的上界.(1)证明:在上有界函数;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【题目详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.2、B【解题分析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【题目详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.3、B【解题分析】通过向量之间的关系将转化到平行四边形边上即可【题目详解】由题意可得,同理:,所以所以,故选B.【题目点拨】本题考查向量的线性运算,重点利用向量的加减进行转化,同时,利用向量平行进行代换4、D【解题分析】根据一次函数的性质,结合选项逐一判断即可.【题目详解】A:当时,,所以当乘客量为0时,亏损1个单位,故本选项说法正确;B:当时,,当时,,所以本选项说法正确;C:降低成本而保持票价不变,两条线是平行,所以本选项正确;D:由图可知中:成本不变,同时提高票价,所以本选项说法不正确,故选:D5、C【解题分析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围6、C【解题分析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【题目详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【题目点拨】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同7、B【解题分析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.【题目详解】解:设经过个小时才能驾驶,则,即,由于在定义域上单调递减,,∴他至少经过11小时才能驾驶.则他次日上午最早7点开车才不构成酒后驾车故选:B8、B【解题分析】令,由此判断出正确选项.【题目详解】令,则,故B选项符合.故选:B【题目点拨】本小题主要考查用图像表示角的范围,考查终边相同的角的概念,属于基础题.9、C【解题分析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.10、B【解题分析】利用同角三角函数关系式中的商关系进行求解即可.【题目详解】由,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】设出幂函数,代入点即可求解.【题目详解】由题意,设,代入点得,解得,则.故答案为:.12、【解题分析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【题目详解】因为,,所以,所以,故答案为:.13、##【解题分析】由,应用诱导公式,结合已知角的范围及正弦值求,即可得解.【题目详解】由题设,,又,即,且,所以,故.故答案为:14、【解题分析】直接利用诱导公式即可求解.【题目详解】由诱导公式得:.故答案为:.15、53【解题分析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【题目详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【题目点拨】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.16、【解题分析】利用对数函数的定义域列出不等式组即可求解.【题目详解】由题意可得,解得,所以函数的定义域为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2)证明见解析;(3)证明见解析.【解题分析】(1)由满足性质可得恒成立,取可求,取可求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,由可得,所以,;【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.【题目点拨】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.18、(1)(2)(3)【解题分析】(1)+=+=+=.(2)===.(3)sin2α-2sinαcosα+4cos2α====.19、(1)(2)答案见解析【解题分析】(1)若选①②,则的解集不可能为;若选②③,,开口向下,则无最小值.只能是选①③,由函数的解集为可知,-1,3是方程的根,则,又由的最小值可知且在对称轴上取得最小值,从而解出;(2)由,即,然后对分类求解得答案;【小问1详解】选①②,则,开口向下,所以的解集不可能为;选①③,函数的解集为,,3是方程的根,所以的对称轴为,则,所以,又的最小值为,(1),解得,,所以则;选②③,,开口向下,则无最小值综上,.【小问2详解】由化简得若,则或;若,则不等式解集为R;若,则或当时,不等式的解集为或;当,则不等式解集为R;当,则不等式的解集为或20、(1)选择①②④三个条件,(2)【解题分析】(1)根据各条件之间的关系,可确定最大值1与②④矛盾,故③不符合题意,从而确定①②④三个条件;(2)将化简为,再通过换元转化为二次函数问题再求解.【小问1详解】①由条件③可知,函数的周期,最大值为1与②④矛盾,故③不符合题意.选择①②④三个条件.由②得,由④中,知,则,由①知,解得,又,则.所求函数表达式为.【小问2详解】由,令,那么,令,其对称轴为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业科技项目经理论题库
- 航空调度员转正面试题库含答案
- 产品设计师绩效考核含答案
- 公司治理部业务考试题集及答案
- 教育咨询师面试题集如何制定个性化教育方案
- 考试题库设备设施管理专业知识测试
- 文化传媒公司员工绩效考核制度解读
- Section Ⅱ Reading and Thinking(4)英语教学课件
- 模块过关检测
- 2025年福建南平武夷融创产业招商发展有限公司招聘无人机消防员补充招录8人考试笔试模拟试题及答案解析
- 成品综合支吊架深化设计及施工技术专项方案
- 改革开放简史智慧树知到课后章节答案2023年下北方工业大学
- 木薯变性淀粉生产应用课件
- 地下水污染与防治课件
- 校门安全管理“十条”
- 超全QC管理流程图
- 临时工劳动合同简易版可打印
- 洁净室施工及验收规范标准
- -井巷工程课程设计
- pks r5xx装机及配置手册
- GB/T 17215.322-2008交流电测量设备特殊要求第22部分:静止式有功电能表(0.2S级和0.5S级)
评论
0/150
提交评论