广东省珠海市2024届高一数学第一学期期末达标检测试题含解析_第1页
广东省珠海市2024届高一数学第一学期期末达标检测试题含解析_第2页
广东省珠海市2024届高一数学第一学期期末达标检测试题含解析_第3页
广东省珠海市2024届高一数学第一学期期末达标检测试题含解析_第4页
广东省珠海市2024届高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省珠海市2024届高一数学第一学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,c=40.1,则()A. B.C. D.2.已知函数f(x)=,若f(a)=f(b)=f(c)且a<b<c,则ab+bc+ac的取值范围为()A. B.C. D.3.已知函数是定义在上的偶函数,且在上单调递增,若,则不等式解集为A. B.C. D.4.已知定义在上的奇函数满足当时,,则关于的函数,()的所有零点之和为()A. B.C. D.5.“不等式在上恒成立”的一个必要不充分条件是()A. B.C. D.6.已知.则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.定义在的函数,已知是奇函数,当时,单调递增,若且,且值()A.恒大于0 B.恒小于0C.可正可负 D.可能为08.已知直线,,若,则实数的值为A.8 B.2C. D.-29.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.10.设,,,则的大小顺序是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上有两个零点,则实数的取值范围是_______.12.已知函数,若函数有3个零点,则实数a的取值范围是_______.13.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____14.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.15.不等式tanx+16.在中,,,则面积的最大值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)作出函数的图象,并写出单调区间;(2)若函数有两个零点,求实数的取值范围18.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.19.在平面四边形中(如图甲),已知,且现将平面四边形沿折起,使平面平面(如图乙),设点分别为的中点.(1)求证:平面平面;(2)若三棱锥的体积为,求的长.20.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)21.已知函数,且(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用指对数函数的性质判断指对数式的大小.【题目详解】由,∴.故选:A.2、D【解题分析】画出函数的图象,根据,,互不相等,且(a)(b)(c),我们令,我们易根据对数的运算性质,及,,的取值范围得到的取值范围【题目详解】解:作出函数的图象如图,不妨设,,,,,,由图象可知,,则,解得,,则,解得,,的取值范围为故选.【题目点拨】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力,解答的关键是图象法的应用,即利用函数的图象交点研究方程的根的问题,属于中档题.3、B【解题分析】,又函数是定义在上的偶函数,且在上单调递增,所以,解得.考点:偶函数的性质.【思路点睛】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.根据函数奇偶性可得,再根据函数的单调性,可得;然后再解不等式即可求出结果4、B【解题分析】作函数与的图象,从而可得函数有5个零点,设5个零点分别为,从而结合图象解得【题目详解】解:作函数与的图象如下,结合图象可知,函数与的图象共有5个交点,故函数有5个零点,设5个零点分别为,∴,,,故,即,故,故选B【题目点拨】本题考查了函数零点与函数的图象的关系应用及数形结合的思想应用,属于常考题型.5、C【解题分析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【题目详解】因为“不等式在上恒成立”,所以当时,原不等式为在上不是恒成立的,所以,所以“不等式在上恒成立”,等价于,解得.A选项是充要条件,不成立;B选项中,不可推导出,B不成立;C选项中,可推导,且不可推导,故是的必要不充分条件,正确;D选项中,可推导,且不可推导,故是的充分不必要条件,D不正确.故选:C.【题目点拨】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含6、A【解题分析】求解出成立的充要条件,再与分析比对即可得解.【题目详解】,,则或,由得,由得,显然,,所以“”是“”的充分不必要条件.故选:A【题目点拨】结论点睛:充分不必要条件的判断:p是q的充分不必要条件,则p对应集合是q对应集合的真子集.7、A【解题分析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知选A8、A【解题分析】利用两条直线平行的充要条件求解【题目详解】:∵直线l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,∴,解得a=8故选A.【题目点拨】】本题考查实数值的求法,是基础题,解题时要认真审题,注意直线平行的性质的灵活运用9、C【解题分析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【题目详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C10、A【解题分析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【题目详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【题目点拨】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可【题目详解】由题意,要使函数区间上有两个零点,只要,即,解得,故答案为【题目点拨】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题.12、(0,1]【解题分析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【题目详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【题目点拨】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键13、23【解题分析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【题目详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.14、【解题分析】求出扇形的半径后,利用扇形的面积公式可求得结果.【题目详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:15、kπ,π4【解题分析】根据正切函数性质求解、【题目详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π416、【解题分析】利用诱导公式,两角和与差余弦公式、同角间的三角函数关系得,得均为锐角,设边上的高为,由表示出,利用基本不等式求得的最大值,即可得三角形面积最大值【题目详解】中,,所以,整理得,即,所以均为锐角,作于,如图,记,则,,所以,,当且仅当即时等号成立.所以,的最大值为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】(1)根据函数的表达式,作出函数的图象即可;(2)问题转化为求函数的交点问题,结合函数的图象,由数形结合得出即可【题目详解】解:(1)画出函数的图象,如图示:,由图象得:在,单调递增;(2)若函数有两个零点,则和有2个交点,结合图象得:【题目点拨】本题考查了指数函数、对数函数的图象及性质,考查函数的零点问题,是一道基础题18、(I).(II)【解题分析】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为.考点:古典概型点评:主要是考查了古典概型的运用,属于基础题19、(1)证明见解析;(2).【解题分析】(1)先证明平面又,则平面进而即可证明平面平面;(2)由,结合面积体积公式求解即可【题目详解】(1)在图乙中,平面平面且平面平面,底面又,且平面而分别是中点,平面又平面平面平面.(2)由(1)可知,平面,设,则.,即.20、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解题分析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【题目详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【题目点拨】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.21、(1)(2)f(x)在(0,1)上单调递减,证明见解析.【解题分析】(1)根据即可求出a=b=1,从而得出;(2)容易判断f(x)在区间(0,1)上单调递减,根据减函数的定义证明:设x1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论