2022-2023学年江西省上饶市汉林中学高二数学文测试题含解析_第1页
2022-2023学年江西省上饶市汉林中学高二数学文测试题含解析_第2页
2022-2023学年江西省上饶市汉林中学高二数学文测试题含解析_第3页
2022-2023学年江西省上饶市汉林中学高二数学文测试题含解析_第4页
2022-2023学年江西省上饶市汉林中学高二数学文测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年江西省上饶市汉林中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.曲线在点处的切线方程为(

) A. B.

C.

D.参考答案:A2.平面α∥平面β,AB、CD是夹在α和β间的两条线段,E、F分别为AB、CD的中点,则EF与α的关系是

()

A.平行

B.相交

C.垂直

D.不能确定参考答案:A3.若p是假命题,q是假命题,则()A.p∧q是真命题 B.p∨q是假命题 C.¬p是假命题 D.¬q是假命题参考答案:B【考点】复合命题的真假.【分析】利用复合命题的真假写出结果即可.【解答】解:p是假命题,q是假命题,¬p是真命题,¬q是真命题,可得p∨q是假命题.故选:B.4.数列满足,若,,则等于(

)A.-9 B.9 C.±9 D.以上都不对参考答案:B由数列满足,可知:,且∴数列为等比数列∴,又,,∴故选:B

5.化极坐标方程ρ2cosθ﹣ρ=0为直角坐标方程为()A.x2+y2=0或y=1 B.x=1 C.x2+y2=0或x=1 D.y=1参考答案:C【考点】点的极坐标和直角坐标的互化.【分析】利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.【解答】解:∵ρ2cosθ﹣ρ=0,∴ρcosθ﹣1=0或ρ=0,∵,∴x2+y2=0或x=1,故选C.6.下列求导正确的是()A.(x+)′=1+ B.(log2x)′=C.(3x)′=3xlog3x D.(x2cosx)′=﹣2xsinx参考答案:B【考点】63:导数的运算;66:简单复合函数的导数.【分析】根据求导公式,对四个选项中的函数进行判断以确定其正确与否,A中用和的求导公式验证;B用对数的求导公式验证;C用指数的求导公式验证;D用乘积的求导公式进行验证.【解答】解:A选项不正确,因为(x+)′=1﹣;B选项正确,由对数的求导公式知(log2x)′=;C选项不正确,因为(3x)′=3xln3,故不正确.D选项不正确,因为(x2cosx)′=2xcosx﹣x2sinx故选B7.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种 B.48种 C.96种 D.144种参考答案:C【考点】计数原理的应用.【专题】计算题.【分析】本题是一个分步计数问题,A只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把A排列,程序B和C实施时必须相邻,把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列.【解答】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果根据分步计数原理知共有2×48=96种结果,故选C.【点评】本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,注意排列过程中的相邻问题,利用捆绑法来解,不要忽略被捆绑的元素之间还有一个排列.8.在[-1,1]上随机的取一个实数k,则事件“直线与圆相交”发生的概率为(

).A. B. C. D.参考答案:C直线与圆相交,则:,解得:,结合长度型几何概型公式可得满足题意的概率为:.本题选择C选项.9.设f(x)=x2+ax+b,且1≤f(-1)≤2,2≤f(1)≤4,则点(a,b)在aOb平面上的区域的面积是

A.

B.1

C.2 D.参考答案:B10.如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是(

)A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE,B1C1为异面直线,且AE⊥B1C1D.A1C1∥平面AB1E参考答案:C考点:空间中直线与平面之间的位置关系.专题:证明题;综合法.分析:由题意,此几何体是一个直三棱柱,且其底面是正三角形,E是中点,由这些条件对四个选项逐一判断得出正确选项解答:解:A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确;故选C.点评:本题考查空间中直线与平面之间的位置关系,解题的关键是理解清楚题设条件,根据所学的定理,定义对所面对的问题进行证明得出结论,本题考查空间想象能力以及推理谁的能力,综合性较强二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是____.参考答案:.【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.【详解】设点,则.又,当时,,点A在曲线上的切线为,即,代入点,得,即,考查函数,当时,,当时,,且,当时,单调递增,注意到,故存在唯一实数根,此时,故点的坐标为.【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.12.已知平面α∩平面β=l,a?β,a∥α,那么直线a与直线l的位置关系是.参考答案:平行【考点】空间中直线与平面之间的位置关系.【专题】整体思想;综合法;空间位置关系与距离.【分析】根据直线和平面平行的判定定理和性质定理进行判断证明即可.【解答】解:a与b的位置关系:平行.设过a的平面γ有γ∩α=b,∵a∥α,γ∩α=b,∴a∥b,∵a?β,∴b∥β,∵α∩β=l,∴b∥l,∵a∥b,∴a∥l【点评】本题考查线面平行的判定定理和性质定理的运用,两直线位置关系的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.13.设,,为坐标平面上三点,为坐标原点,若与在方向上的投影相同,则

.参考答案:3

略14.在平面直角坐标系中,已知的顶点和,若顶点在双曲线的左支上,则.参考答案:15.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为

.参考答案:【考点】由三视图求面积、体积.【分析】由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,分别计算侧面积,即可得出结论.【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED=×1×1=,S△ABC=S△ABE=×1×=,S△ACD=×1×=,故答案为:16.分别为上的奇函数和偶函数,时,,则不等式的解集为参考答案:17.设圆C经过点M(-2,0)和N(9,0),直线l过坐标原点,圆C和l的交弦为PQ,当l绕坐标原点旋转时,弦PQ长度的最小值是

。参考答案:6三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.参考答案:解:(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的侧视图如下图所示:其中AB=AC,AD⊥BC,且BC的长是俯视图正六边形对边的距离,即BC=a,AD是正六棱锥的高,即AD=a,所以该平面图形的面积为S=·a·a=a2.(3)设这个正六棱锥的底面积是S′,体积为V,则S′=6×a2=a2,所以V=×a2×a=a3.19.已知等差数列{an}的公差d>0,且a1?a6=11,a3+a4=12.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn.参考答案:【考点】数列的求和.【分析】(1)利用等差数列的通项公式及其性质、一元二次方程的根与系数的关系即可得出.(2)利用“累加求和”方法即可得出.【解答】解:(1)∵a1?a6=11,a3+a4=12=a1+a6.∴a1,a6是x2﹣12x+11=0方程的两根,且a1<a6,解得a1=1,a6=11.∴11﹣1=5d,即d=2,∴an=2n﹣1.(2)=﹣.∴数列{}的前n项和Tn=++…+=﹣.20.已知.(1)解不等式;(2)若不等式的解集非空,求实数a的取值范围.参考答案:(1);(2)或【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)根据绝对值三角不等式求最小值,再解不等式得结果.【详解】(1)因为,所以或或,即或或,从而(2)因为,所以或.【点睛】本题考查解含绝对值不等式以及绝对值三角不等式,考查综合分析求解能力,属中档题.

21.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的非负半轴,建立平面直角坐标系,直线l的参数方程是(t是参数).(1)将曲线C的极坐标方程和直线l的参数方程转化为普通方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,试求实数m的值.参考答案:【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用三种方程的转化方法,将曲线C的极坐标方程和直线l的参数方程转化为普通方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,圆心到直线的距离d==,即可求实数m的值.【解答】解:(1)曲线C的极坐标方程是ρ=4cosθ,所以ρ2=4ρcosθ,它的直角坐标方程是:x2+y2=4x,即:(x﹣2)2+y2=4,…直线l的参数方程是(t是参数),直线l的直角坐标方程为y=x﹣m…(2)由题意,圆心到直线的距离d==,∴=,∴m=1或m=3…22.(本小题满分14分)已知函数(为自然对数的底数).(Ⅰ)求函数的单调区间;(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围;(Ⅲ)设,求证:+++…+<..Com]参考答案:解:(Ⅰ)∵,

………1分当a≤0时,得函数f(x)在(-∞,+∞)上是增函数.当a>0时,若x∈(lna,+∞),,得函数在(lna,+∞)上是增函数;

若x∈(-∞,lna),,得函数在(-∞,lna)上是减函数.综上所述,当a≤0时,函数f(x)的单调递增区间是(-∞,+∞);当a>0时,函数f(x)的单调递增区间是(lna,+∞),单调递减区间是(-∞,lna).

………5分(Ⅱ)由题知:不等式ex-ax>x+x2对任意成立,即不等式对任意成立.

………6分设(x≥2),于是.

………7分再设,得.由x≥2,得,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论