版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄阳市吴店镇清潭第一中学2024届八年级数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.42.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是()A.矩形 B.正方形 C.等腰梯形 D.无法确定3.若的三条边长分别是、、,且则这个三角形是()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形4.分式可变形为(
)A.
B.
C.
D.5.已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为()A.4cm B.cm C.5cm D.5cm或cm6.若将一副三角板按如图所示的方式放置,则下列结论:①;②如果,则有;③如果,则有;④如果,必有;其中正确的有()A.①②③ B.①②④ C.②③④ D.①②③④7.《九章算术》是中国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,在其方程章中有一道题:今有甲乙二人,不知其钱包里有多少钱,若乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,问甲、乙各有多少钱?若设甲持钱为x,乙持钱为y,则可列方程组A. B. C. D.8.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4) B.(-3,4) C.(-3,-4) D.(-4,3)9.一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B. C. D.10.下列从左到右的变形是分解因式的是()A. B.C. D.11.下列二次根式中,最简二次根式是()A. B. C. D.12.一组数据1,4,5,2,8,它们的数据分析正确的是()A.平均数是5 B.中位数是4 C.方差是30 D.极差是6二、填空题(每题4分,共24分)13.如图,是的中线,是的中线,若,则_________.14.在锐角中,有一点它到、两点的距离相等,并且点到、的距离也相等.,,则______°.15.某住宅小区有一块草坪如图所示,已知AB=6米,BC=8米,CD=24米,DA=26米,且AB⊥BC,则这块草坪的面积是________平方米.16.如图所示,△ABC中,点D,E分别是AC,BD上的点,且∠A=65°,∠ABD=∠DCE=30°,则∠BEC的度数是________.17.△ABC中,∠C=90°,∠A=54°,则∠B=____°.18.对于实数a,b,定义运算“※”:a※b=,例如3※1,因为3<1.所以3※1=3×1=2.若x,y满足方程组,则x※y=_____.三、解答题(共78分)19.(8分)如图,在等腰中,,,是边上的中点,点,分别是边,上的动点,点从顶点沿方向作匀速运动,点从从顶点沿方向同时出发,且它们的运动速度相同,连接,.(1)求证:.(2)判断线段与的位置及数量关系,并说明理由.(3)在运动过程中,与的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.20.(8分)解方程:=1.21.(8分)(1)(问题情境)小明遇到这样一个问题:如图①,已知是等边三角形,点为边上中点,,交等边三角形外角平分线所在的直线于点,试探究与的数量关系.小明发现:过作,交于,构造全等三角形,经推理论证问题得到解决.请直接写出与的数量关系,并说明理由.(2)(类比探究)如图②,当是线段上(除外)任意一点时(其他条件不变)试猜想与的数量关系并证明你的结论.(3)(拓展应用)当是线段上延长线上,且满足(其他条件不变)时,请判断的形状,并说明理由.22.(10分)(1)如图1,已知,平分外角,平分外角.直接写出和的数量关系,不必证明;(2)如图2,已知,和三等分外角,和三等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(3)如图3,已知,、和四等分外角,、和四等分外角.试确定和的数量关系,并证明你的猜想;(不写证明依据)(4)如图4,已知,将外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,请直接写出和的数量关系,不必证明.23.(10分)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm-3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.24.(10分)某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:科目频数频率语文0.5数学12英语6物理0.2(1)求出这次调查的总人数;(2)求出表中的值;(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.25.(12分)已知函数y=(m+1)x2-|m|+n+1.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?26.在△ABC中,∠ACB=2∠B,(1)如图①,当∠C=90°,AD为∠ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.请证明AB=AC+CD;(2)①如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C≠90°,AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明.
参考答案一、选择题(每题4分,共48分)1、C【分析】作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.【题目详解】解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=1,即点D到AB边的距离为1.故答案为C.【题目点拨】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..2、D【解题分析】分析:对角线相等的四边形有正方形,矩形,等腰梯形,一般的四边形等.解答:解:用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状可能是正方形,矩形,等腰梯形,一般的四边形等,所以是无法确定.故选D3、B【分析】根据非负性质求出a,b,c的关系,即可判断.【题目详解】∵,∴a=b,b=c,∴a=b=c,∴△ABC为等边三角形.故选B.【题目点拨】本题考查平方和绝对值的非负性,等边三角形的判定,关键在于利用非负性解出三边关系.4、D【分析】根据分式的性质,可化简变形.【题目详解】.故答案为D【题目点拨】考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.5、D【分析】分4为直角边和斜边两种情况,结合勾股定理求得第三边即可.【题目详解】设三角形的第三边长为xcm,由题意,分两种情况:当4为直角边时,则第三边为斜边,由勾股定理得:,解得:x=5,当4为斜边时,则第三边为直角边,由勾股定理得:,解得:x=,∴第三边长为5cm或cm,故选:D.【题目点拨】本题考查了勾股定理,解答的关键是分类确定4为直角边还是斜边.6、B【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【题目详解】解:①∵∠CAB=∠EAD=90°,
∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,
∴∠1=∠3,故本选项正确.②∵∠2=30°,
∴∠1=90°-30°=60°,
∵∠E=60°,
∴∠1=∠E,
∴AC∥DE,故本选项正确.③∵∠2=30°,
∴∠3=90°-30°=60°,
∵∠B=45°,
∴BC不平行于AD,故本选项错误.④由∠2=30°可得AC∥DE,从而可得∠4=∠C,故本选项正确.故选B.【题目点拨】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.7、B【分析】由乙把其钱的一半给甲,则甲的钱数为50;若甲把其钱的给乙,则乙的钱数也能为50,列出方程组求解即可.【题目详解】解:由题意得:,故选B.【题目点拨】本题考查了二元一次方程组的应用,解答本题的关键是理解题意列出方程组.8、C【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).【题目详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【题目点拨】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.9、C【分析】设总工程量为1,根据甲单独做需要m天完成,乙单独做需要n天完成,可以求出甲乙每天的工作效率,从而可以得到甲乙合作需要的天数。【题目详解】设总工程量为1,则甲每天可完成,乙每天可完成,所以甲乙合作每天的工作效率为所以甲、乙合作完成工程需要的天数为故答案选C【题目点拨】本题考查的是分式应用题,能够根据题意求出甲乙的工作效率是解题的关键。10、C【分析】考查因式分解的概念:把一个多项式分解成几个整式的积的形式.【题目详解】解:A.正确分解为:,所以错误;B.因式分解后为积的形式,所以错误;C.正确;D.等式左边就不是多项式,所以错误.【题目点拨】多项式分解后一定是几个整式相乘的形式,才能叫因式分解11、C【分析】满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.【题目详解】A、∵,故不是最简二次根式,此选项错误;B、∵,故不是最简二次根式,此选项错误;C、是最简二次根式,此选项正确;D、,故不是最简二次根式,此选项错误.故选:C.【题目点拨】本题考查了最简二次根式,解题的关键是理解什么是最简二次根式.12、B【分析】根据平均数、中位数、方差和极差的概念分别计算可得.【题目详解】解:将数据重新排列为1、2、4、5、8,则这组数据的平均数为=4,中位数为4,方差为×[(1-4)2+(2-4)2+(4-4)2+(5-4)2+(8-4)2]=6,极差为8-1=7,故选:B.【题目点拨】本题主要考查方差,解题的关键是掌握平均数、中位数、方差和极差的概念.二、填空题(每题4分,共24分)13、18cm2【分析】根据是的中线可先求到的值,再根据是的中线即可求到的值.【题目详解】解:是的中线,是的中线故答案为:.【题目点拨】本题考查的是中线的相关知识,中线将三角形的面积分为相等的两部分.14、110【分析】根据已知可得∠PBC=∠PCB,点在的角平分线上,从而得出∠PBC=∠PCB=∠ABP,再根据三角形的内角和定理可得出答案【题目详解】解:根据题意画出图形∵点它到、两点的距离相等,∴PB=PC,∴∠PBC=∠PCB,
∵点到、的距离也相等∴BP是∠ABC的角平分线,
∴∠PBC=∠ABP,
∴∠PBC=∠PCB=∠ABP,∵∠A=50°,
∴∠ABP+∠PBC+∠PCB+∠ACP=130°,
∵∠ACP=25°,
∴∠PBC=∠PCB=35°.∴∠BPC=180°-35°-35°=110°故答案为:110【题目点拨】此题主要考查了角平分线的判定、三角形的内角和定理、等腰三角形的性质,,正确得出∠PBC=∠PCB=∠ABP是解题关键.15、【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ACD是直角三角形,分别计算两个直角三角形的面积,再求和即所求的面积.【题目详解】解:连接AC,∵在△ABC中,AB⊥BC即∠ABC=90°,AB=6,BC=8,∴,,又∵CD=24,DA=26,∴,∴,∴△ACD是直角三角形,且∠ACD=90°∴∴故答案为:144.【题目点拨】本题考查了勾股定理、勾股定理的逆定理的应用,同时考查了直角三角形的面积公式.作辅助线构造直角三角形是解题的关键.16、125°【解题分析】解:∵∠A=65°,∠ABD=30°,∴∠BDC=∠A+∠ABD=65°+30°=95°,∴∠BEC=∠EDC+∠DCE=95°+30°=125°.故答案为125°.17、36°【分析】根据直角三角形的两锐角互余解答即可.【题目详解】∵△ABC中,∠C=90°,∴∠A+∠B=90º,∵∠A=54º,∴∠B=90º-∠A=90º-54º=36º,故答案为:36º.【题目点拨】本题考查了直角三角形的性质,属于三角形的基础题,掌握直角三角形的两锐角互余是解答的关键.18、13【分析】求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可.【题目详解】解:方程组,①+②×1得:9x=108,解得:x=2,把x=2代入②得:y=5,则x※y=2※5==13,故答案为13【题目点拨】本题考查了解一元二次方程组,利用了消元的思想,消元的方法有:代入消元与加减消元法.三、解答题(共78分)19、(1)证明见解析;(2)DE⊥DF,DE=DF,证明见解析;(3)△BDE与△CDF的面积之和始终是一个定值,这个定值为1.【解题分析】(1)由题意根据全等三角形的判定运用SAS,求证即可;(2)根据全等三角形的性质结合中点和垂线定义,进行等量替换即可得出线段与的位置及数量关系;(3)由题意根据全等三角形的性质得出S△BDE+S△CDF=S△ADF+S△CDF=S△ADC,进而分析即可得知与的面积之和.【题目详解】解:(1)∵AB=AC,D是BC边上的中点,∴AD是BC边上的高又∵∠BAC=90°,∴∠ABD=∠DAF=∠BAD=45°,∴BD=AD又由题意可知BE=AF,∴△BDE≌△ADF(SAS).(2)∵DE⊥DF,DE=DF,理由如下:∵△BDE≌△ADF,∴DE=DF,∠BDE=∠ADF∵AB=AC,D是BC边上的中点,∴AD⊥BC,∠BDE+∠ADE=90°,∴∠ADE+∠ADF=90°,DE⊥DF.(3)在运动过程中,△BDE与△CDF的面积之和始终是一个定值∵AB=AC,D是BC边上的中点,∠BAC=90°,∴AD=BD=BC=4又∵△BDE≌△ADFS△BDE+S△CDF=S△ADF+S△CDF=S△ADC又∵S△ADC=S△ABC=.BC.AD=1∵点E,F在运动过程中,△ADC的面积不变,∴△BDE与△CDF的面积之和始终是一个定值,这个定值为1.【题目点拨】本题考查全等三角形的综合问题,熟练掌握全等三角形的性质与判定是解题的关键.20、【解题分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【题目详解】原方程变形为,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得.检验:把代入(2x﹣1),(2x﹣1)≠0,∴是原方程的解,∴原方程的.【题目点拨】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.21、(1),理由见解析;(2),理由见解析;(3)是等边三角形,理由见解析.【分析】(1)根据等边三角形的性质可得,然后根据平行线的性质可得,从而证出是等边三角形,即可证出,然后证出、,最后利用ASA即可证出,从而得出结论;(2)过作交于,同理可知是等边三角形,从而证出,再证出和,利用ASA即可证出,从而得出结论;(3)根据等三角形的性质和已知条件可得,再根据三线合一可得垂直平分,从而得出,再根据等边三角形的判定即可证出结论.【题目详解】解:(1),理由如下:∵是等边三角形,∴,∵,∴,∴是等边三角形,∴,又,∴,∵是外角平分线,∴,∴,∴∵,∴,∴在与中,∴,∴;(2)证明:过作交于,∵是等边三角形,∴是等边三角形,∴BF=BD∴∵,,∴∵是外角平分线,∴,∴,∴在与中,∴,∴;(3)是等边三角形,∵是等边三角形,∴,∵,∴,∵是等边三角形外角平分线.∴垂直平分,∴,∵,∴是等边三角形.【题目点拨】此题考查的是等边三角形的判定及性质和全等三角形的判定及性质,掌握构造全等三角形的方法和等边三角形的判定及性质是解决此题的关键.22、(1);(2);(3);(4).【分析】(1)由平分外角,平分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(2)由和三等分外角,和三等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(3)由、和四等分外角,、和四等分外角,结合三角形外角的性质与三角形内角和定理,即可得到结论;(4)由外角进行分,是临近边的等分线,将外角进行等分,是临近边的等分线,合三角形外角的性质与三角形内角和定理,即可得到结论;【题目详解】(1),理由如下:∵平分外角,平分外角,∴,,∵,,∴,∴;(2),理由如下:由已知得:,,∵,,∴,;(3),理由如下:由已知得:,,∵,,∴,,(4),理由如下:由已知得:,,∵,,∴,∴.【题目点拨】本题主要考查三角形外角的性质与三角形内角和定理,掌握三角形外角的性质与三角形内角和定理是解题的关键.23、(1)m=18;(2)有3种购买方案,每月最多处理污水量的吨数为1880吨.【解题分析】(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出m的分式方程,求出m的值即可;
(2)设买A型污水处理设备x台,B型则(10-x)台,根据题意列出x的一元一次不等式,求出x的取值范围,进而得出方案的个数,并求出最大值.【题目详解】(1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,即可得:90m解得m=18,经检验m=18是原方程的解,即m=18,(2)设买A型污水处理设备x台,B型则(10-x)台,根据题意得:18x+15(10-x)≤156,解得x≤2,由于x是整数,则有3种方案,当x=0时,10-x=10,月处理污水量为1800吨,当x=1时,10-x=9,月处理污水量为220+180×9=1840吨,当x=2时,10-x=8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.【题目点拨】本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的等量关系是解决问题的关键.24、(1)60人;(2)a=30,b=0.2,c=0.1,d=12;(3)喜爱英语的人数为100人,看法见解析.【分析】(1)用喜爱英语科目的人数除以其所占比例;(2)根据频数=频率×总人数求解可得;(3)用八年级总人数乘以样本中喜爱英语科目人数所占比例,计算即可.【题目详解】解:(1)这次调查的总人数为:6÷(36°÷360°)=60(人);(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);(3)喜爱英语的人数为1000×0.1=100(人),看法:由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中喜爱人数最多的科目.【题目点拨】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计图或统计表中得到必要的信息是解决问题的关键.用到的知识点为:频数=频率×总人数.25、(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−1时,这个函数是正比例函数.【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案.【题目详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+1=0,解得:m=±1,n=−1,又∵m+1≠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网金融培训
- 农业科技推广与应用指导(标准版)
- 2026年剧本杀运营公司剧本开场前讲解规范制度
- 2025年老年大学教育管理五年报告
- 2025年环保包装技术创新驱动因素:新型设备生产项目可行性研究报告
- 护理扎针的专业发展
- 2026年自动驾驶车辆传感器技术报告及未来五至十年智能网联汽车报告
- 2026年5G通信产业升级报告及未来十年技术演进报告
- AI驱动的校园环境智能垃圾分类系统设计研究教学研究课题报告
- 2026年可穿戴设备健康监测创新报告及未来五至十年技术融合报告
- 拆除爆破施工方案
- 青海省西宁市2024-2025学年高一上学期期末调研测试物理试卷(解析版)
- 2025年浙江省中考科学试题卷(含答案解析)
- 《建筑材料与检测》高职土木建筑类专业全套教学课件
- 风电塔筒升降机项目可行性研究报告
- 急性呼吸窘迫综合征病例讨论
- 毕业设计(论文)-自动展开晒衣架设计
- T/CCMA 0164-2023工程机械电气线路布局规范
- GB/T 43590.507-2025激光显示器件第5-7部分:激光扫描显示在散斑影响下的图像质量测试方法
- 2025四川眉山市国有资本投资运营集团有限公司招聘50人笔试参考题库附带答案详解
- 2025年铁岭卫生职业学院单招职业倾向性测试题库新版
评论
0/150
提交评论