福建省夏门市金鸡亭中学2024届数学八上期末统考模拟试题含解析_第1页
福建省夏门市金鸡亭中学2024届数学八上期末统考模拟试题含解析_第2页
福建省夏门市金鸡亭中学2024届数学八上期末统考模拟试题含解析_第3页
福建省夏门市金鸡亭中学2024届数学八上期末统考模拟试题含解析_第4页
福建省夏门市金鸡亭中学2024届数学八上期末统考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省夏门市金鸡亭中学2024届数学八上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若分式的值为零,则的值为()A. B. C. D.2.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE

③DE=BE

④AD=AB+CD,四个结论中成立的是()A. B. C. D.3.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个 B.3个 C.2个 D.1个4.如图,在中,的平分线与的垂直平分线相交于点,过点分别作于点,于点,下列结论正确的是()①;②;③;④;⑤.A.①②③④ B.②③④⑤ C.①②④⑤ D.①②③④⑤5.一个三角形三个内角的度数的比是.则其最大内角的度数为()A. B. C. D.6.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120° B.130° C.140° D.150°7.若过多边形的每一个顶点只有6条对角线,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形8.下列运算错误的是()A. B. C. D.9.关于函数y=﹣3x+2,下列结论正确的是()A.图象经过点(﹣3,2) B.图象经过第一、三象限C.y的值随着x的值增大而减小 D.y的值随着x的值增大而增大10.若点与点关于轴对称,则的值是()A.-2 B.-1 C.0 D.111.下列根式中不是最简二次根式的是()A. B. C. D.12.若分式的值为0,则()A.x=-2 B.x=0 C.x=1 D.x=1或-2二、填空题(每题4分,共24分)13.已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.14.如图,平行四边形ABCD的对角线相交于O点,则图中有__对全等三角形.15.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.16.当a=3,a-b=-1时,a2-ab的值是17.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是_____.18.定义表示不大于的最大整数、,例如,,,,,,则满足的非零实数值为_______.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AF;(2)过点E作EG∥DC,交AC于点G,试比较AF与GC的大小关系,并说明理由.20.(8分)已知在等边三角形的三边上,分别取点.(1)如图1,若,求证:;(2)如图2,若于点于于,且,求的长;(3)如图3,若,求证:为等边三角形.21.(8分)张明和李强两名运动爱好者周末相约进行跑步锻炼,周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的体育场入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达体育场后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=1.2,n=5时,求李强跑了多少分钟?②直接写出张明的跑步速度为多少米/分(直接用含m,n的式子表示)22.(10分)如图,在ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE交BC于点D,交AB于点E,求AE的长.23.(10分)如图,已知∠DAE+∠CBF=180°,CE平分∠BCD,∠BCD=2∠E.(1)求证:AD∥BC;(2)CD与EF平行吗?写出证明过程;(3)若DF平分∠ADC,求证:CE⊥DF.24.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=1.25.(12分)如图1,两个不全等的等腰直角三角形和叠放在一起,并且有公共的直角顶点.(1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.(2)将图1中绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.26.化简:(1);(2)

参考答案一、选择题(每题4分,共48分)1、C【分析】根据分式的值为零的条件:分子=0且分母≠0,即可求出结论.【题目详解】解:∵分式的值为零,∴解得:x=-3故选C.【题目点拨】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键.2、A【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【题目详解】过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB,∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【题目点拨】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.3、B【解题分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【题目详解】解:由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,综上正确的一共有3个,故选B.【题目点拨】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.4、D【分析】连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.【题目详解】∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,②正确;∵P在BC的垂直平分线上,∴PC=PB,④正确;在Rt△PMC和Rt△PNB中,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.⑤正确;∴,∵,,∴,∴,①正确;∵,∴,③正确.故选D.【题目点拨】本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,主要考查学生运用定理进行推理的能力.5、B【分析】先将每份的角度算出来,再乘以5即可得出最大内角的角度.【题目详解】180°÷(2+3+5)=180°÷10=18°.5×18°=90°.故选B.【题目点拨】本题考查三角形内角的计算,关键在于利用内角和算出平分的每份角度.6、C【解题分析】试题分析:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.考点:垂线的定义;平行线的性质;三角形的外角性质7、C【分析】从n边形的一个顶点可以作条对角线.【题目详解】解:∵多边形从每一个顶点出发都有条对角线,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:C.【题目点拨】掌握边形的性质为本题的关键.8、C【分析】根据负整数指数幂,逐个计算,即可解答.【题目详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【题目点拨】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.9、C【解题分析】根据一次函数的性质和一次函数图象的性质,依次分析各个选项,选出正确的选项即可.【题目详解】A.把x=﹣3代入y=﹣3x+2得:y=11,即A项错误,B.函数y=﹣3x+2的图象经过第一、二、四象限,即B项错误,C.y的值随着x的增大而减小,即C项正确,D.y的值随着x的增大而减小,即D项错误,故选C.【题目点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数的性质和一次函数图象是解题的关键.10、D【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【题目详解】解:∵点与点关于y轴对称,

∴,,

解得:m=3,,n=−2,

所以m+n=3−2=1,

故选:D.【题目点拨】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.11、C【题目详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.=2,故不是最简二次根式.故选C12、C【分析】要使分式的值等于0,则分子等于0,且分母不等于0.【题目详解】若分式的值为0,则x-1=0,且x+2≠0,所以,x=1,x≠-2,即:x=1.故选C【题目点拨】本题考核知识点:分式值为0的条件.解题关键点:熟记要使分式的值等于0,则分子等于0,且分母不等于0.二、填空题(每题4分,共24分)13、x1<x1【解题分析】由k=-1-a1,可得y随着x的增大而减小,由于1>-1,所以x1<x1.【题目详解】∵y=(-1-a1)x+1,k=-1-a1<0,∴y随着x的增大而减小,∵1>-1,∴x1<x1.故答案为:x1<x1【题目点拨】本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.14、1【分析】根据平行四边形的性质及全等三角形的判定方法进行分析,从而得到答案.【题目详解】解:∵ABCD是平行四边形∴AD=BC,AB=CD,AO=CO,BO=DO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),同理:△ADO≌△CBO;在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理:△ACD≌△CAB;∴图中的全等三角形共有1对.故答案为:1.【题目点拨】本题主要考查了平行四边形的性质、全等三角形的判定;熟记平行四边形的性质是解决问题的关键.15、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【题目详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【题目点拨】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.16、-1【解题分析】试题分析:直接提取公因式,然后将已知代入求出即可.即a2-ab=a(a-b)=1×(-1)=-1.考点:因式分解-提公因式法.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17、4n+1.【分析】观察图形可知,第一个黑色地面砖有六个白色地面砖包围,再每增加一个黑色地面砖就要增加四个白色地面砖.据此规律即可解答.【题目详解】解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+1.∴m与n的函数关系式是m=4n+1.故答案为:4n+1.【题目点拨】本题考查平面图形组合的规律,主要培养学生的观察能力和空间想象能力,解题的关键是发现规律:在第1个图案的基础上,多1个图案,多4个白色地面砖.18、【分析】设x=n+a,其中n为整数,0≤a<1,则[x]=n,{x}=x-[x]=a,由此可得出2a=n,进而得出a=n,结合a的取值范围即可得出n的取值范围,结合n为整数即可得出n的值,将n的值代入a=n中可求出a的值,再根据x=n+a即可得出结论.【题目详解】设,其中为整数,,则,,原方程化为:,.,即,,为整数,、.当时,,此时,为非零实数,舍去;当时,此时.故答案为:1.1.【题目点拨】本题考查了新定义运算,以及解一元一次不等式,读懂题意熟练掌握新定义是解题的关键.三、解答题(共78分)19、(1)见解析;(2)AF=GC,理由见解析.【分析】(1)根据直角三角形的性质和角平分线的定义可得∠BED=∠AFB,然后根据对顶角的性质和等量代换可得∠AEF=∠AFB,进一步即可推出结论;(2)如图,过F作FH⊥BC于点H,根据角平分线的性质可得AF=FH,进而可得AE=FH,易得FH∥AE,然后根据平行线的性质可得∠EAG=∠HFC,∠AGE=∠C,进而可根据AAS证明△AEG≌△FHC,再根据全等三角形的性质和线段的和差即可得出结论.【题目详解】(1)证明:∵∠BAC=90°,∴∠ABF+∠AFB=90°,∵AD⊥BC,∴∠EBD+∠BED=90°,∵BF平分∠ABC,∴∠ABF=∠EBD,∴∠BED=∠AFB,∵∠BED=∠AEF,∴∠AEF=∠AFB,∴AE=AF;(2)AF=GC;理由如下:如图,过F作FH⊥BC于点H,∵BF平分∠ABC,且FH⊥BC,AF⊥BA,∴AF=FH,∵AE=AF,∴AE=FH,∵FH⊥BC,AD⊥BC,∴FH∥AE,∴∠EAG=∠HFC,∵EG∥BC,∴∠AGE=∠C,∴△AEG≌△FHC(AAS),∴AG=FC,∴AF=GC.【题目点拨】本题考查了直角三角形的性质、角平分线的性质、全等三角形的判定和性质、平行线的性质以及等腰三角形的判定等知识,涉及的知识点多,但难度不大,熟练掌握上述知识、灵活应用全等三角形的判定和性质是解题的关键.20、(1)证明见解析;(2)5;(3)证明见解析.【分析】(1)根据等边三角形的性质得出,,,进一步证得,即可证得;(2)根据等边三角形性质和30°的直角三角形性质,得出线段长之间关系,列出方程即可解答;(3)延长BD到M,使BM=AD,连接ME,延长EC到N,使CN=BE,连接FN,可得,再证,从而得出,再由三角形外角性质即可证得结论.【题目详解】证明:(1)如图1中,是等边三角形,,,,,在和中,∴,(2)如图2中,是等边三角形,,,,,∴,同理可得:,,∵,即:∴解得:(3)如图3,延长BD到M,使BM=AD,连接ME,延长EC到N,使CN=BE,连接FN,∵AD=CF,∴BM=CF,是等边三角形,,,,在和中,,,∴,,又∵,,∴在和中,,,∴,又∵,,∴;又∵∴为等边三角形.【题目点拨】此题考查了等边三角形性质,含30度角的直角三角形性质,全等三角形的性质和判定的应用,主要锻炼学生的推理能力,解(3)的关键通过作辅助线构造三角形全等证明角和线段的关系.21、(1)李强的速度为80米/分,张明的速度为1米/分;(2)①李强跑了2分钟;②张明的速度为米/分.【分析】(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据时间=路程÷速度结合两人同时到达,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)①设张明的速度为y米/分,则李强的速度为1.2y米/分,根据李强早到5分钟,即可得出关于y的分式方程,解方程即可;②设张明的速度为y米/分,则李强的速度为my米/分,根据李强早到n分钟,即可得出关于y的分式方程,解方程即可.【题目详解】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,依题意,得:=,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①设张明的速度为y米/分,则李强的速度为1.2y米/分,依题意,得:-=5,解得:y=200,经检验,y=200是原方程的解,且符合题意,∴=2.答:李强跑了2分钟.②设张明的速度为y米/分,则李强的速度为my米/分,依题意,得:-=n,解得:y=,经检验,y=是原方程的解,且符合题意,答:张明的速度为(米/分).【题目点拨】本题考查了分式方程的应用,熟悉路程问题的数量关系是列出方程的关键.注意分式方程要检验.22、【分析】根据勾股定理的逆定理可得是直角三角形,且∠A=90°,然后设,由线段垂直平分线的性质可得,再根据勾股定理列方程求出x即可.【题目详解】解:连接,∵在中,,,,∴,∴是直角三角形,且∠A=90°,∵是的垂直平分线,∴,设,则,∴,解得,即的长是.【题目点拨】本题考查了线段垂直平分线的性质,勾股定理及其逆定理.关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23、(1)详见解析;(2)CD∥EF,证明详见解析;(3)详见解析.【分析】(1)根据同角的补角相等,即可得到∠CBF=∠DAB,进而得到AD∥BC;(2)依据∠BCD=2∠DCE,∠BCD=2∠E,即可得出∠E=∠DCE,进而判定CD∥EF;(3)依据AD∥BC,可得∠ADC+∠DCB=180°,进而得到∠COD=90°,即可得出CE⊥DF.【题目详解】解:(1)∵∠DAE+∠CBF=180°,∠DAE+∠DAB=180°,∴∠CBF=∠DAB,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论