2024届安徽省安庆四中学八年级数学第一学期期末质量检测模拟试题含解析_第1页
2024届安徽省安庆四中学八年级数学第一学期期末质量检测模拟试题含解析_第2页
2024届安徽省安庆四中学八年级数学第一学期期末质量检测模拟试题含解析_第3页
2024届安徽省安庆四中学八年级数学第一学期期末质量检测模拟试题含解析_第4页
2024届安徽省安庆四中学八年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省安庆四中学八年级数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是()A.3和11 B.7和7 C.6和8或7和7 D.3和11或7和72.如图,若,则的度数是()A. B. C. D.3.如图点按的顺序在边长为1的正方形边上运动,是边上的中点.设点经过的路程为自变量,的面积为,则函数的大致图象是().A. B. C. D.4.已知非等腰三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A.8cm或10cmB.8cm或9cmC.8cmD.10cm5.用代入法解方程组时消去y,下面代入正确的是()A. B. C. D.6.能使分式的值为零的所有x的值是()A.x=1 B.x=﹣1 C.x=1或x=﹣1 D.x=2或x=17.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为().A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)8.某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为45°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.30cm B.35cm C.35cm D.65cm9.下列四个分式中,是最简分式的是()A. B. C. D.10.要使分式有意义,则的取值应满足()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,平分,平分,与交于,若,,则的度数为_________.(用表示)12.如图,在中.是的平分线.为上一点,于点.若,,则的度数为__________.13.已知是关于的二元一次方程的一个解,则的值为_____.14.如图,在△ABC中,BF⊥AC于点F,AD⊥BC于点D,BF与AD相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE=_______________cm

.15.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是__________.16.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.17.如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26cm,BC=6cm,则△BCD的周长是__________cm.18.已知线段AB=8cm,点C在直线AB上,BC=3cm,则线段AC的长为________.三、解答题(共66分)19.(10分)如图,在中,,点在内,,,点在外,,.(1)求的度数.(2)判断的形状并加以证明.(3)连接,若,,求的长.20.(6分)学校到--家文具店给九年级学生购买考试用文具包,该文具店规一次购买个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款元;若再多买个就可享受八折优惠,并且同样只需付款元.求该校九年级学生的总人数.(列分式方程解答)21.(6分)如图A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水.有两种方案备选.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB).(如图)方案2:作A点关于直线CD的对称点,连接交CD于M点,水厂建在M点处,分别向两村修管道AM和BM.(即AM+BM)(如图)从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工.请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,当快艇Q与CD中点G相距多远时,△ABQ为等腰三角形?直接写出答案,不要说明理由.22.(8分)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?23.(8分)如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AC,AB上,且BD=CE,DC=BF,连结DE,EF,DF,∠1=60°(1)求证:△BDF≌△CED.(2)判断△ABC的形状,并说明理由.24.(8分)某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.25.(10分)如图,CE是△ABC的外角∠ACD的平分线,交BA的延长线于点E,已知∠B=25°,∠E=30°,求∠BAC的度数.26.(10分)如图1,点B,C分别是∠MAN的边AM、AN上的点,满足AB=BC,点P为射线的AB上的动点,点D为点B关于直线AC的对称点,连接PD交AC于E点,交BC于点F。(1)在图1中补全图形;(2)求证:∠ABE=∠EFC;(3)当点P运动到满足PD⊥BE的位置时,在射线AC上取点Q,使得AE=EQ,此时是否是一个定值,若是请直接写出该定值,若不是,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【题目详解】解:等腰三角形的周长是22.当8为腰时,它的底边长,,能构成等腰三角形.当8为底时,它的腰长,,能构成等腰三角形.即它两边的长度分别是6和8或7和7.故选:C.【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.2、B【分析】先根据等边对等角求出,再根据外角的性质,利用即可求解.【题目详解】解:又故选:B.【题目点拨】本题考查了等腰三角形的性质以及三角形的外角,正确的分析题意,进行角的计算,即可求出正确答案.3、C【分析】分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可.【题目详解】由点M是CD中点可得:CM=,(1)如图:当点P位于线段AB上时,即0≤x≤1时,y==x;(2)如图:当点P位于线段BC上时,即1<x≤2时,BP=x-1,CP=2-x,y===;(3)如图:当点P位于线段MC上时,即2<x≤时,MP=,y===.综上所述:.根据一次函数的解析式判断一次函数的图像,只有C选项与解析式相符.故选:C.【题目点拨】本题主要考查一次函数的实际应用,分类讨论,将分别表示为一次函数的形式是解题关键.4、A【解题分析】根据三角形的三边关系求得第三边的取值范围,再根据第三边为整数即可得出答案.【题目详解】解:根据三角形的三边关系,得

7cm<第三边<11cm,

故第三边为8,1,10,

又∵三角形为非等腰三角形,

∴第三边≠1.

故选:A.【题目点拨】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.5、D【分析】方程组利用代入消元法变形得到结果,即可作出判断.【题目详解】用代入法解方程组时,把y=1-x代入x-2y=4,得:x-2(1-x)=4,去括号得:,故选:D.【题目点拨】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6、B【解题分析】分析:根据分式的值为0的条件:分子等于0,分母≠0,构成不等式组求解即可.详解:由题意可知:解得x=-1.故选B.点睛:此题主要考查了分式的值为0的条件,利用分式的值为0的条件:分子等于0,分母≠0,构造不等式组求解是解题关键.7、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【题目详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【题目点拨】此题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解决此题的关键.8、D【分析】由题意可知,进入容器内的三角形可看作是一个斜边为70cm的等腰直角三角形,由等腰三角形三线合一的性质可得到高,即可求出答案.【题目详解】由题意可知,进入容器内的三角形可看作是一个斜边为70cm的等腰直角三角形,由等腰三角形三线合一的性质可得到高斜边上的高应该为35cm,使容器中的液面与上方装置相接触,容器中液体的高度至少应为100﹣35=65cm.故选D.考点:等腰直角三角形.9、A【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【题目详解】是最简分式;==x+1,不是最简分式;=,不是最简分式;==a+b,不是最简分式.故选A.【题目点拨】此题主要考查了最简分式的概念,一个分式的分子与分母没有非零次的公因式时叫最简分式,看分式的分子分母有没有能约分的公因式是解题关键.10、A【分析】根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【题目详解】解:要使分式有意义,则,所以.故选:A.【题目点拨】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.二、填空题(每小题3分,共24分)11、【分析】连接BC,根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【题目详解】连接BC.∵∠BDC=m°,∴∠DBC+∠DCB=180°-m°,∵∠BGC=n°,∴∠GBC+∠GCB=180°-n°,∴∠GBD+∠GCD=(180°-n°)-(180°-m°)=m°-n°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠ABD+∠ACD=2∠GBD+2∠GCD=2m°-2n°,∴∠ABC+∠ACB=2m°-2n°+180°-m°=180°+m°-2n°,∴∠A=180°-(∠ABC+∠ACB)=180°-(180°+m°-2n°)=2n°-m°,故答案为2n°-m°.【题目点拨】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.12、65°【分析】先求出∠ADB的度数,继而根据三角形外角的性质求出∠CAD的度数,再根据角平分线的定义求出∠BAC的度数,进而根据三角形内角和定理求解即可得.【题目详解】∵EF⊥BC,∴∠EFD=90°,又∵∠DEF=15°,∴∠ADB=90°-∠DEF=90°-15°=75°,∵∠C=35°,∠ADB=∠C+∠CAD,∴∠CAD=75°-35°=40°,∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°,故答案为:65°.【题目点拨】本题考查了三角形内角和定理,三角形外角的性质,直角三角形两锐角互余,角平分线的定义等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.13、1【分析】根据方程解的定义把代入关于x,y的二元一次方程,通过变形即可求解.【题目详解】解:把代入关于x,y的二元一次方程,得,移项,得m﹣n=1.故答案为:1.【题目点拨】本题考查了方程的解的定义,一组数是方程的解,那么它一定满足这个方程,代入方程,可求得m﹣n的值.14、1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【题目详解】解:∵BF⊥AC于F,AD⊥BC于D,

∴∠CAD+∠C=90°,∠CBF+∠C=90°,

∴∠CAD=∠CBF,

∵在△ACD和△BED中,∴△ACD≌△BED,(ASA)

∴DE=CD,

∴AE=AD-DE=BD-CD=BC-CD-CD=1;

故答案为1.【题目点拨】本题考查了全等三角形的判定和性质,本题中求证△ACD≌△BED是解题的关键.15、a+1.【解题分析】试题解析:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+1),∵拼成的长方形一边长为a,∴另一边长是a+1.考点:图形的拼接.16、5<<13【分析】设这根木棒的长度为,根据在三角形中,任意两边之和大于第三边,得<4+9=13,任意两边之差小于第三边,得>9-4=5,所以这根木棒的长度为5<<13.【题目详解】解:这根木棒的长度的取值范围是9-4<<9+4,即5<<13.故答案为5<<13.【题目点拨】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.17、1【分析】根据线段垂直平分线性质求出AD=BD,根据△ABC周长求出AC,推出△BCD的周长为BC+CD+BD=BC+AC,代入求出即可.【题目详解】∵DE垂直平分AB,

∴AD=BD,

∵AB=AC,△ABC的周长为26,BC=6,

∴AB=AC=(26-6)÷2=10,

∴△BCD的周长为BC+CD+BD=BC+CD+AD=BC+AC=6+10=1.故答案为:1.【题目点拨】本题考查了线段垂直平分线性质和等腰三角形的应用,解此题的关键是求出AC长和得出△BCD的周长为BC+AC,注意:线段垂直平分线上的点到线段两个端点的距离相等.18、5cm或11cm【分析】本题主要考查分类讨论的数学思想,因为C点可能在线段AB上,即在A、B两点之间,也可能在直线AB上,即在线段AB的延长线上,所以分情况讨论即可得到答案.【题目详解】①当C点在线段AB上时,C点在A、B两点之间,此时cm,∵线段cm,∴cm;②当C点在线段AB的延长线上时,此时cm,∵线段cm,∴cm;综上,线段AC的长为5cm或者11cm【题目点拨】本题主要考查一个分类讨论的数学思想,题目整体的难度不大,但解题过程中一定要认真的分析,避免遗漏可能出现的情况.三、解答题(共66分)19、(1)∠ADC=150°;(2)△ACE是等边三角形,证明见解析;(2)DE=1.【分析】(1)先证明△DBC是等边三角形,根据SSS证得△ADC≌△ADB,得到∠ADC=∠ADB即可得到答案;(2)证明△ACD≌△ECB得到AC=EC,利用即可证得的形状;(2)根据及等边三角形的性质求出∠EDB=20°,利用求出∠DBE=90°,根据△ACD≌△ECB,AD=2,即可求出DE的长.【题目详解】(1)∵BD=BC,∠DBC=10°,∴△DBC是等边三角形.∴DB=DC,∠BDC=∠DBC=∠DCB=10°.在△ADB和△ADC中,,∴△ADC≌△ADB.∴∠ADC=∠ADB.∴∠ADC=(210°﹣10°)=150°.(2)△ACE是等边三角形.理由如下:∵∠ACE=∠DCB=10°,∴∠ACD=∠ECB.∵∠CBE=150°,∠ADC=150°∴∠ADC=∠EBC.在△ACD和△ECB中,,∴△ACD≌△ECB.∴AC=CE.∵∠ACE=10°,∴△ACE是等边三角形.(2)连接DE.∵DE⊥CD,∴∠EDC=90°.∵∠BDC=10°,∴∠EDB=20°.∵∠CBE=150°,∠DBC=10°,∴∠DBE=90°.∴EB=DE.∵△ACD≌△ECB,AD=2,∴EB=AD=2.∴DE=2EB=1.【题目点拨】此题考查等边三角形的判定及性质,直角三角形的性质,三角形全等的判定及性质,(2)是此题的难点,证得∠EDB=20°,∠DBE=90°是解题的关键.20、该校九年级学生的总人数是人.【分析】首先设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款2520元”可得每个文具包的花费是元,根据“若多买70个,就可享受8折优惠,同样只需付款2520元”可得每个文具包的花费是元,根据题意可得方程即可【题目详解】解:设该校九年级学生的总人数是人,由题意得,解得:,经检验:是原分式方程的解,且符合题意.答:该校九年级学生的总人数是人.【题目点拨】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.21、(1)方案1更合适;(2)QG=时,△ABQ为等腰三角形.【分析】(1)分别求出两种路线的长度进行比较;(2)分类讨论,然后解直角三角形.【题目详解】(1)过A点作AE⊥BD于E,∵BD=4,AC=1,∴BE=3.∵AE=CD=4,BE=3,在△ABE中,根据勾股定理得:AB=,=5.过A,作A,H⊥BD于H,在直角三角形A,HB中,根据勾股定理得:A,B=,=,=,方案①AC+AB=1+5=6.方案②AM+MB=A,B=.∵6<,∴方案①路线短,比较合适.(2)过A点以AB为半径作圆交CD于E和F点,图中由勾股定理求得EC=CF=2.所以QG=2-2或2+2.过B点为圆心以AB为半径作圆,交CD于G、H.由勾股定理可求得:GD=DH=3,所以QG=1或5.做AB的垂直平分线交CD于Q,求得:QG=.综上,QG=时,△ABQ为等腰三角形.【题目点拨】本题考查了勾股定理的应用,熟悉辅助线的构造是解题的关键.22、(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【题目详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【题目点拨】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.23、(1)见解析;(2)△ABC是等边三角形,理由见解析【分析】(1)用SAS定理证明三角形全等;(2)由△BDF≌△CED得到∠BFD=∠CDE,然后利用三角形外角的性质求得∠B=∠1=60°,从而判定△ABC的形状.【题目详解】解:(1)证明:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,∴△BDF≌△CED(SAS);(2)△ABC是等边三角形,理由如下:由(1)得:△BDF≌△CED,∴∠BFD=∠CDE,∵∠CDF=∠B+∠BFD=∠1+∠CDE,∴∠B=∠1=60°,∵AB=AC,∴△ABC是等边三角形;【题目点拨】本题考查全等三角形的判定和性质,等边三角形的判定,掌握判定定理正确推理论证是本题的解题关键.24、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.【分析】(1)设甲种书柜单价为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论