版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1椭圆的定义与标准方程“嫦娥二号”于2010年10月1日18时59分57秒在西昌卫星发射中心发射升空♦自然界处处存在着椭圆,我们如何用自己的双手画出椭圆呢?先回忆如何画圆3.绳长能小于两图钉之间的距离吗?1.视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?在画板上取两个定点,把一条长度为定值的细绳用图钉固定在处。♦如何定义椭圆?圆的定义:平面上到定点的距离等于定长的点的集合叫圆.椭圆的定义:平面上到两个定点F1,
F2的距离之和为固定值(大于|F1F2
|)的点的轨迹叫作椭圆.1.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?2.绳长能小于两图钉之间的距离吗?
1.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?2.绳长能小于两图钉之间的距离吗?
注意:
(1)必须在平面内;
(2)两个定点——两点间距离确定;(常记作2c)
(3)常数——轨迹上任意点到两定点距离和确定.(常记作2a,且2a>2c)1.椭圆定义:
平面内与两个定点
的距离和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距
.若2a=F1F2轨迹是什么呢?若2a<F1F2轨迹是什么呢?轨迹是一条线段轨迹不存在回忆圆标准方程推导步骤♦提出了问题就要试着解决问题.怎么推导椭圆的标准方程呢?♦求动点轨迹方程的一般步骤:1、建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;2、写出适合条件P(M);3、用坐标表示条件P(M),列出方程;
4、化方程为最简形式。坐标法♦探讨建立平面直角坐标系的方案OxyOxyOxyMF1F2方案一F1F2方案二OxyMOxy原则:尽可能使方程的形式简单、运算简单;
(一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.)(对称、“简洁”)xF1F2P(x,y)0y设P(x,y)是椭圆上任意一点,椭圆的焦距|F1F2|=2c(c>0),则F1、F2的坐标分别是(
c,0)、(c,0).
P与F1和F2的距离的和为固定值2a(2a>2c)
(问题:下面怎样化简?)由椭圆的定义得,限制条件:由于得方程两边除以得由椭圆定义可知整理得两边再平方,得移项,再平方椭圆的标准方程刚才我们得到了焦点在x轴上的椭圆方程,如何推导焦点在y轴上的椭圆的标准方程呢?(问题:下面怎样化简?)由椭圆的定义得,限制条件:由于得方程?OXYF1F2M(-c,0)(c,0)YOXF1F2M(0,-c)(0,c)♦椭圆的标准方程的特点:(1)椭圆标准方程的形式:左边是两个分式的平方和,右边是1(2)椭圆的标准方程中三个参数a、b、c满足a2=b2+c2。(3)由椭圆的标准方程可以求出三个参数a、b、c的值。(4)椭圆的标准方程中,x2与y2的分母哪一个大,则焦点在哪一个轴上。分母哪个大,焦点就在哪个轴上平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹标准方程不同点相同点图形焦点坐标定义a、b、c的关系焦点位置的判断♦再认识!xyF1F2POxyF1F2PO则a=
,b=
;则a=
,b=
;5346口答:则a=
,b=
;则a=
,b=
.3如图:求满足下列条件的椭圆方程解:椭圆具有标准方程其中因此所求方程为例1.求出刚才在实验中画出的椭圆的标准方程例2
求两个焦点的坐标分别是(0,-2)﹑(0,2),并且经过点的椭圆方程。法(2)待定系数法解:由题意可设椭圆的标准方程为∵椭圆的焦点为(0,-2),(0,2)又∵椭圆过点由⑴⑵可得∴⑴∴⑵所以椭圆的标准方程为:课堂练习1.如果椭圆上一点P到焦点的距离等于6,那么点P到另一个焦点的距离是
142.已知经过椭圆的右焦点作直线AB交椭圆于A,B两点,是椭圆的左焦点,则△的周长为203、求满足下列条件的椭圆的标准方程:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国安全教育培训感言课件
- 《税法》第8章:特点目的税法
- 建筑学专业就业前景
- 全员培训课件手机播放
- 宝鸡职业发展规划指南
- 人工智能训练方法
- 安全督导新举措讲解
- 贷款业务话术书籍
- 动物医学就业前景分析
- 光电工厂安全培训内容课件
- 2026年安全员考试题库300道附完整答案【必刷】
- 销售行业合同范本
- 2026年民用无人机操控员执照(CAAC)考试复习重点题库标准卷
- 英语试卷+答案黑龙江省哈三中2025-2026学年上学期高二学年12月月考(12.11-12.12)
- 中北大学2025年招聘编制外参编管理人员备考题库(一)参考答案详解
- 中华联合财产保险股份有限公司2026年校园招聘备考题库及一套完整答案详解
- 诗经中的爱情课件
- 2025年烟花爆竹经营单位安全管理人员考试试题及答案
- 2025天津大学管理岗位集中招聘15人参考笔试试题及答案解析
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试参考题库及答案解析
- TCAMET02002-2019城市轨道交通预埋槽道及套筒技术规范
评论
0/150
提交评论