




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东济南市历下区2024届数学八上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若是完全平方式,则m的值是()A.-1 B.7 C.7或-1 D.5或12.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为().A.B.(a+b)2=a2+2ab+b2C.D.3.若点P(x,y)在第四象限,且,,则x+y等于:()A.-1 B.1 C.5 D.-54.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差 B.中位数 C.众数 D.平均数5.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图中描述了他上学的途中离家距离(米)与离家时间(分钟)之间的函数关系.下列说法中正确的个数是()(1)修车时间为15分钟;(2)学校离家的距离为4000米;(3)到达学校时共用时间为20分钟;(4)自行车发生故障时离家距离为2000米.A.1个 B.2个 C.3个 D.4个6.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°7.平面直角坐标系中,点P(-3,4)关于轴对称的点的坐标为()A.(3,4) B.(-3,-4) C.(-3,4) D.(3,-4)8.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将沿OB翻折,A的对应点为E,OE交BC于点D,则D点的坐标为()A.(,6) B.(,6) C.(,6) D.(,6)9.下列手机APP图案中,属于轴对称的是()A. B. C. D.10.将代数式的分子,分母都扩大5倍,则代数式的值()A.扩大5倍 B.缩小5倍 C.不变 D.无法确定11.某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,2012.对于实数a、b定义一种运算“※”,规定a※b=,如1※3=,则方程※(﹣2)=的解是()A. B. C. D.二、填空题(每题4分,共24分)13.已知一直角三角形的两边分别为3和4,则第三边长的平方是__________;14.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.15.已知:如图,在平面直角坐标系xOy中,一次函数y=x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.16.已知一个等腰三角形的顶角30°,则它的一个底角等于_____________.17.计算:___________________.18.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.三、解答题(共78分)19.(8分)小明在学了尺规作图后,通过“三弧法”作了一个,其作法步骤是:①作线段,分别以为圆心,取长为半径画弧,两弧的交点为C;②以B为圆心,长为半径画弧交的延长线于点D;③连结.画完后小明说他画的的是直角三角形,你认同他的说法吗,请说明理由.20.(8分)先化简,再求值:[(x﹣2y)2﹣(x+y)(x﹣y)+5xy]÷y,其中x=﹣2,y=1.21.(8分)如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.22.(10分)观察下列各式:=1+-=;=1+-=;=1+-=.(1)请你根据上面三个等式提供的信息,猜想:的值;(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式,并验证;(3)利用上述规律计算:.23.(10分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.求证:BE=CF.24.(10分)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88________乙________81.1丙6________3(1)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.25.(12分)某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案:方案一:第一次提价p%,第二次提价q%;方案二:第一、二次均提价%;如果设原价为1元,(1)请用含p,p的式子表示提价后的两种方案中的产品价格;(2)若p、q是不相等的正数,设p%=m,q%=n,请你通过演算说明:这两种方案,哪种方案提价多?26.求证:线段垂直乎分线上的点到线段两端的距离相等.已知:求证:证明:
参考答案一、选择题(每题4分,共48分)1、C【解题分析】试题分析:完全平方式的形式是a2±2ab+b2,本题首末两项是x和4这两个数的平方,那么中间一项应为±8x,所以2(m﹣3)=±8,即m=7或﹣1.故答案选C.考点:完全平方式.2、D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【题目详解】图甲中阴影的面积等于边长为a的正方形面积减去边长为b的正方形面积,即,图乙中平行四边形底边为(),高为(),即面积=,∵两个图中的阴影部分的面积相等,即:.
∴验证成立的公式为:.
故选:D.【题目点拨】本题考查了平方差公式的几何背景,运用不同方法表示阴影部分面积是解题的关键.3、A【分析】先根据P点的坐标判断出x,y的符号,然后再根据|x|=2,|y|=1进而求出x,y的值,即可求得答案.【题目详解】∵|x|=2,|y|=1,∴x=2,y=1.∵P(x、y)在第四象限∴x=2,y=-1.∴x+y=2-1=-1,故选A.【题目点拨】本题主要考查了点在第四象限时点的坐标的符号及绝对值的性质,熟练掌握各个象限内点的坐标的符号特点是解答本题的关键.4、A【解题分析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差5、C【分析】(1)根据图象中平行于x轴的那一段的时间即可得出答案;(2)根据图象的纵轴的最大值即可得出答案;(3)根据图象的横轴的最大值即可得出答案;(4)根据图象中10分钟时对应的纵坐标即可判断此时的离家距离.【题目详解】(1)根据图象可知平行于x轴的那一段的时间为15-10=5(分钟),所以修车时间为5分钟,故错误;(2)根据图象的纵轴的最大值可知学校离家的距离为4000米,故正确;(3)根据图象的横轴的最大值可知到达学校时共用时间为20分钟,故正确;(4)根据图象中10分钟时对应的纵坐标为2000,所以自行车发生故障时离家距离为2000米,故正确;所以正确的有3个.故选:C.【题目点拨】本题主要考查一次函数的应用,读懂函数的图象是解题的关键.6、A【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.【题目详解】由题意知,当B.
P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴【题目点拨】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.7、B【分析】根据点关于坐标轴对称的特点,即可得到答案.【题目详解】解:∵关于x轴对称,则横坐标不变,纵坐标变为相反数,∴点P()关于x轴对称的点坐标为:(),故选:B.【题目点拨】本题考查了轴对称的性质,解题的关键是熟练掌握点关于坐标轴对称的特点,从而进行解题.8、D【分析】根据翻折的性质及勾股定理进行计算即可得解.【题目详解】∵四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为∴OC=AB=6,BC=OA=8,,,BC//OA∴∵将沿OB翻折,A的对应点为E∴∴∴OD=BD设CD=x,则在中,∴解得:∴点D的坐标为,故选:D.【题目点拨】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.9、B【分析】根据轴对称的定义即可判断.【题目详解】A不是轴对称图形,B是轴对称图形,C不是轴对称图形,D不是轴对称图形,故选B.【题目点拨】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.10、C【分析】分析:根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【题目详解】如果把分式
中的x
、y
的值都扩大5
倍可得,则分式的值不变,故选;C.【题目点拨】本题考查了分式的基本性质,解题的关键是灵活运用分式的基本性质.11、D【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【题目详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.故选D.【题目点拨】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.12、C【分析】根据定义新运算公式列出分式方程,然后解分式方程即可.【题目详解】解:∵※(﹣2)=∴解得:x=6经检验:x=6是原方程的解故选C.【题目点拨】此题考查的是定义新运算和解分式方程,掌握定义新运算公式和解分式方程的一般步骤是解决此题的关键.二、填空题(每题4分,共24分)13、25或7【解题分析】试题解析:①长为3的边是直角边,长为4的边是斜边时:第三边长的平方为:②长为3、4的边都是直角边时:第三边长的平方为:综上,第三边长的平方为:25或7.故答案为25或7.14、1.【解题分析】试题分析:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=1°.故答案为1.考点:线段垂直平分线的性质.15、【分析】根据y=x+3求出点A、B的坐标,得到OA、OB的值,即可求出点A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,代入求值即可.【题目详解】由=x+3,当y=0时,得x=-4,∴(﹣4,0),当x=0时,得y=3,∴B(0,3),∴OA=4,OB=3,∴OA′=OA=4,OB′=OB=3,∴A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,∴.解得.∴直线A′B′的解析式是.故答案为:.【题目点拨】此题考查一次函数与坐标轴的交点坐标的求法,待定系数法求一次函数的解析式.16、75°【分析】已知明确给出等腰三角形的顶角是30°,根据等腰三角形的性质及三角形的内角和定理易求得底角的度数.【题目详解】解:∵等腰三角形的顶角是30°,
∴这个等腰三角形的一个底角=(180°-30°)=75°.
故答案为:75°.【题目点拨】此题考查了等腰三角形的性质及三角形内角和定理,此题很简单,解答此题的关键是熟知三角形内角和定理及等腰三角形的性质.17、【分析】根据二次根式乘法法则以及零指数幂的意义先算乘法,然后把积进行相减即可.【题目详解】解:原式=-41=-=故答案.【题目点拨】本题考查了二次根式乘法法则和零指数幂的意义.二次根式乘法法则:两个算数平方根的积,等于它们被开方数的积的算术平方根.零指数幂的意义:任何一个不等于0的数的零次幂都等于1.18、1【解题分析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=3,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=1,故答案为1.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.三、解答题(共78分)19、同意,理由见解析【分析】利用等边对等角可得,再根据三角形内角和定理即可证明.【题目详解】同意,理由如下:解:∵AC=BC=BD,
∴,∵,∴,∴,∴∠ACD=90°,即△ACD是直角三角形.【题目点拨】本题考查等边对等角,三角形内角和定理.能利用等边对等角把相等的边转化为相等的角是解题关键.20、5y+x,2.【分析】原式中括号中利用完全平方公式,平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【题目详解】解:原式===,当时,原式=【题目点拨】本题考查整式的混合运算-化简求值,解题的关键是利用完全平方公式,平方差公式正确化简原式.21、(1)k+b=3;(2)y=﹣x+4;(3)点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【分析】(1)将点P的坐标代入y=x+2并解得m=3,得到点P(1,3);将点P的坐标代入y=kx+b,即可求解;(2)由y=kx+b与两坐标轴围成一等腰直角三角形可求出直线的k值为﹣1,然后代入P点坐标求出b即可;(3)分AP=AQ、AP=PQ、PQ=AQ三种情况,分别求解即可.【题目详解】解:(1)将点P的坐标代入y=x+2可得:m=1+2=3,故点P(1,3),将点P的坐标代入y=kx+b可得:k+b=3;(2)∵y=kx+b与两坐标轴围成一等腰直角三角形,∴设该直线的函数图象与x轴,y轴分别交于点(a,0),(0,a),其中a>0,将(a,0),(0,a),代入得:ak+b=0,b=a,∴ak+a=0,即a(k+1)=0,∴k=﹣1,即y=﹣x+b,代入P(1,3)得:﹣1+b=3,解得:b=4,∴直线l2的表达式为:y=﹣x+4;(3)设点Q(m,0),而点A、P的坐标分别为:(4,0)、(1,3),∴AP=,当AP=AQ时,则点Q(4±3,0);当AP=PQ时,则点Q(﹣2,0);当PQ=AQ时,即(1﹣m)2+9=(4﹣m)2,解得:m=1,即点Q(1,0);综上,点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【题目点拨】此题把一次函数与等腰三角形的性质相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目,其中(3),要注意分类求解,避免遗漏.22、(1);(2);(3).【解题分析】(1)根据提供的信息,即可解答;(2)根据规律,写出等式;(3)根据(2)的规律,即可解答.【题目详解】(1)=;(2).验证:等式左边===等式右边.(3)原式=.【题目点拨】本题考查了二次根式的性质与化简,解题的关键是理解题中的信息,找到规律.23、见解析【分析】由AD是△ABC的中线就可以得出BD=CD,再由平行线的性质得到∠FCD=∠EBD,∠DFC=∠DEB,推出△CDF≌△BDE,就可以得出BE=CF.【题目详解】∵AD是△ABC的中线,∴BD=CD,∵BE∥CF,∴∠FCD=∠EBD,∠DFC=∠DEB,在△CDF和△BDE中,,∴△CDF≌△BDE(AAS),∴BE=CF.【题目点拨】本题考查了全等三角形的判定及性质、平行线的性质等知识,解答时证明三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CCPITCSC 120-2023中国品牌影响力评价通则
- T/CCMA 0068-2018沥青混合料搅拌设备专用振动筛
- T/CCEAT 001-2021电工(煤矿井工)岗位操作人员培训规范
- T/CASTEM 1006-2022科技评估报告编制通用要求
- T/CAQI 362-2023宠物食品用益生菌通则
- T/CAQI 145-2020地理标志产品龙口粉丝
- T/CAPA 1-2019脂肪注射移植
- 京东2025年java开发测试面试题及答案
- 众安保险java研三面试题及答案
- 定期疫苗检查管理制度
- 中心静脉导管(CVC)维护操作流程
- 【工程监理】监理范围、监理内容
- 岩溶处理监理细则
- 走进舞蹈艺术-首都师范大学中国大学mooc课后章节答案期末考试题库2023年
- 市容秩序辅助管理投标方案
- 2023年广东省中考全科试题及答案
- 单位工程的施工组织设计的编制实训
- 工作作风不严谨的表现及改进措施范文(通用5篇)
- 上海交通大学医学院病理生理学习题集
- 学生骑摩托车安全承诺书范本
- 河北永洋特钢集团有限公司产业重组、退城搬迁、装备升级建设项目环境影响报告
评论
0/150
提交评论