版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年陕西省四校联考高二上数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.562.设,若函数,有大于零的极值点,则A. B.C. D.3.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.4.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.命题“若,则”的否命题为“若,则”C.若命题p:或;命题q:或,则是的必要不充分条件D.“”是“”的充分不必要条件5.已知直线与直线,若,则()A.6 B.C.2 D.6.已知函数,则的值为()A. B.C.0 D.17.若抛物线焦点与椭圆的右焦点重合,则的值为A. B.C. D.8.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.869.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定10.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁11.抛物线的焦点坐标是A. B.C. D.12.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,把椭圆的长轴八等分,过每个分点作轴的垂线交椭圆的上半部分于,,,七个点,是椭圆的一个焦点,则的值为__________14.已知点,圆:.若过点的圆的切线只有一条,求这条切线方程____________.15.不等式的解集是___________.16.在中.若成公比为的等比数列,则____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求的单调区间;(2)求函数在区间上的最大值与最小值.18.(12分)已知数列{an}满足*(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn19.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.20.(12分)已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.21.(12分)某话剧表演小组由名学生组成,若从这名学生中任意选取人,其中恰有名男生的概率是.(1)求该小组中男、女生各有多少人?(2)若这名学生站成一排照相留念,求所有排法中男生不相邻的概率.22.(10分)已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.2、B【解析】设,则,若函数在x∈R上有大于零的极值点即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B考点:利用导数研究函数的极值3、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D4、C【解析】根据逆否命题的定义可判断A;根据否命题的定义可判断B;求出、,根据充分条件和必要条件的概念可以判断C;解出不等式,根据充分条件和必要条件的概念可判断D.【详解】命题“若,则”的逆否命题为“若,则”,故A正确;命题“若,则”的否命题为“若,则”,故B正确;若命题p:或;命题q:或,则:-1≤x≤1是:-2≤x≤1的充分不必要条件,故C错误;或x<1,故“”是“”的充分不必要条件,故D正确.故选:C.5、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A6、B【解析】对函数求导,然后将代入导数中可得结果.【详解】,则,则,故选:B7、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D8、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.9、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.10、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题11、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.12、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D二、填空题:本题共4小题,每小题5分,共20分。13、28【解析】设椭圆的另一个焦点为由椭圆的几何性质可知:,同理可得,且,故,故答案为.14、或【解析】由题设知A在圆上,代入圆的方程求出参数a,结合切线的性质及点斜式求切线方程.【详解】因为过的圆的切线只有一条,则在圆上,所以,则,且切线斜率,即,所以切线方程或,整理得或.故答案为:或.15、##【解析】将分式不等式等价转化为不等式组,求解即得.【详解】原不等式等价于,解得,故答案为:.16、【解析】由条件可得,即,由余弦定理可得答案.【详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为;单调减区间为和;(2);.【解析】(1)求出导函数,令,求出单调递增区间;令,求出单调递减区间.(2)求出函数的单调区间,利用函数的单调性即可求解.【详解】1函数的定义域是R,,令,解得令,解得或,所以的单调递增区间为,单调减区间为和;2由在单调递减,在单调递增,所以,而,,故最大值是.18、(1)(2)【解析】(1)根据递推关系式可得,再由等差数列的定义以及通项公式即可求解.(2)利用错位相减法即可求解.【小问1详解】(1),即,所以数列为等差数列,公差为1,首项为1,所以,即.【小问2详解】令,所以,所以19、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.20、(1).(2).【解析】分析:(1)由和可由点斜式得切线方程;(2)由函数在上是减函数,可得在上恒成立,,由二次函数的性质可得解.详解:(1)当时,所以,所以曲线在点处的切线方程为.(2)因为函数在上是减函数,所以在上恒成立.做法一:令,有,得故.实数的取值范围为做法二:即在上恒成立,则在上恒成立,令,显然在上单调递减,则,得实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).21、(1)男生人数为,女生人数为;(2).【解析】(1)设男生的人数为,则女生人数为,且,根据组合计数原理结合古典概型的概率公式可求得的值,即可得解;(2)利用插空法结合古典概型的概率公式可求得所求事件的概率.【小问1详解】解:设男生的人数为,则女生人数为,且,由已知可得,即,因为且,解得,所以,该小组中男生人数为,女生人数为.【小问2详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职护理(护理风险管理)试题及答案
- 2025年中职交通运营管理(交通调度管理)试题及答案
- 2025年大学车辆工程(汽车制造企业生产管理)试题及答案
- 2025年大学大二(人力资源管理)员工关系综合测试试题及答案
- 2025年高职建筑材料工程技术(新型建筑材料研发)试题及答案
- 2026年重庆大学附属江津医院招聘备考题库(中药调剂岗)及完整答案详解1套
- 娱乐直播介绍
- 摄影比赛教学介绍
- 2026年浙江安保管理员考试题库含答案
- 2026年母婴护理新生儿急救基础技能考核题及解析
- 环境卫生学EnvironmentalHygiene10课件
- 桥架安装承包合同
- 牛羊肉精深加工项目可行性研究报告
- 12D101-5 110KV及以下电缆敷设
- 直肠阴道瘘诊疗指南的更新
- DL-T5434-2021电力建设工程监理规范
- FZT 43046-2017 锦纶弹力丝织物
- 居住权协议书
- 病案管理考核标准表格2022版
- 中国家庭金融调查报告
- 顶板安全生产责任制
评论
0/150
提交评论