2022年中考解答题专项训练题4_第1页
2022年中考解答题专项训练题4_第2页
2022年中考解答题专项训练题4_第3页
2022年中考解答题专项训练题4_第4页
2022年中考解答题专项训练题4_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022中考解答题专项训练4五解答题(三)24.已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线.(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半径.25.如图,在平面直角坐标系xoy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求四边形PAOC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△AOC相似?若存在,求出点M的坐标;若不存在,请说明理由.

参考答案与试题解析24.已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线.(2)若OP∥BC,且OP=8,∠C=60°,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OB,求出∠ABC=90°,∠PBA=∠OBC=∠C,推出∠PBO=90°,根据切线的判定推出即可;(2)证△ABC≌△PBO(ASA),进而得出⊙O的半径.【解答】(1)证明:连接OB,∵AC是⊙O直径,∴∠ABC=90°,∵OC=OB,∴∠OBC=∠C,∵∠PBA=∠C,∴∠PBA=∠OBC,即∠PBA+∠OBA=∠OBC+∠ABO=∠ABC=90°,∴OB⊥PB,∵OB为半径,∴PB是⊙O的切线;(2)解:∵OC=OB,∠C=60°,∴△OBC为等边三角形,∴BC=OB,∵OP∥BC,∴∠CBO=∠POB,∴∠C=∠POB,在△ABC和△PBO中∵,∴△ABC≌△PBO(ASA),∴AC=OP=8,即⊙O的半径为4.25.如图,在平面直角坐标系xoy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣,且经过A,C两点,与x轴的另一个交点为点B.(1)求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求四边形PAOC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△AOC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先求的直线y=x+2与x轴交点的坐标,然后利用抛物线的对称性可求得点B的坐标;设抛物线的解析式为y=y=a(x+4)(x﹣1),然后将点C的坐标代入即可求得a的值;(2)设点P、Q的横坐标为m,分别求得点P、Q的纵坐标,从而可得到线段PQ=m2﹣2m,然后利用三角形的面积公式可求得S四边形PAOC=S△AOC+S△PAC=2PQ+4,然后利用配方法可求得△PAC的面积的最大值以及此时m的值,从而可求得点P的坐标;(3)根据两个角对应相等得两个三角形相似,可得M1,根据抛物线的对称性,可得M2,根据对应边成比例且夹角相等的两个三角形相似,可得关于n的方程,根据解方程,可得答案.【解答】解:(1)y=x+2中,当x=0时,y=2,当y=0时,x=﹣4,∴C(0,2),A(﹣4,0),由抛物线的对称性可知:点A与点B关于x=﹣对称,∴点B的坐标为1,0).∵抛物线y=ax2+bx+c过A(﹣4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x﹣1),又∵抛物线过点C(0,2),∴2=﹣4a∴a=﹣∴y=﹣x2﹣x+2.(2)设P(m,﹣m2﹣m+2).如图1,过点P作PQ⊥x轴交AC于点Q,∴Q(m,m+2),∴PQ=﹣m2﹣m+2﹣(m+2)=﹣m2﹣2m,∵S四边形PAOC=S△AOC+S△PAC=×4×2+×PQ×4=2PQ+4=﹣m2﹣4m+4=﹣(m+2)2+8,∴当m=﹣2时,△PAC的面积有最大值是8,此时P(﹣2,3).(3)如图2,,在Rt△AOC中,AC==2,在Rt△BOC中,BC==,∵AC2+BC2=20+5=25=AB2,∴∠ACB=90°,CO⊥AB,∴△ABC∽△AOC∽△CBO,①若点M在x轴上方时,当M点与C点重合,即M(0,2)时,△MAN∽△BAC.根据抛物线的对称性,当M(﹣3,2)时,△MAN∽△ABC;②若点M在x轴的下方时,设N(n,0),则M(n,﹣n2﹣n+2),∴MN=n2+n﹣2,AN=n+4,当=,即===时,MN=AN,即n2+n﹣2=(n+4),化简,得n2+2n﹣8=0,n1=﹣4(舍),n2=2,M(2,﹣3);当=,即===2时,MN=2AN,即n2+n﹣2=2(n+4),化简,得n2﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论