版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省铅山一中、横峰中学2024届高三数学试题第一周周末练习考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,则向量在向量上的投影是()A. B. C. D.2.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A. B. C. D.3.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.设复数满足(为虚数单位),则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.6.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A. B. C. D.7.已知集合,则()A. B. C. D.8.已知集合,集合,则()A. B. C. D.9.已知复数满足,则=()A. B.C. D.10.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.11.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()A.-1 B.1 C.0 D.212.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________.14.已知实数,且由的最大值是_________15.已知实数,满足约束条件,则的最大值是__________.16.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.18.(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.19.(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度.现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶.若幸福度不低于8.5分,则称该人的幸福度为“很幸福”.(Ⅰ)求从这18人中随机选取3人,至少有1人是“很幸福”的概率;(Ⅱ)以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及.20.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.21.(12分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值范围.22.(10分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【题目详解】由于向量,故向量在向量上的投影是.故选:A【题目点拨】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.2、A【解题分析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【题目详解】由题可知原式为,该复数为纯虚数,所以.故选:A【题目点拨】本题考查复数的运算和复数的分类,属基础题.3、D【解题分析】
设,由,得,利用复数相等建立方程组即可.【题目详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【题目点拨】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.4、A【解题分析】
由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【题目详解】由得:,对应的点的坐标为,位于第一象限.故选:.【题目点拨】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.5、B【解题分析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【题目详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【题目点拨】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.6、C【解题分析】
由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.【题目详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:.【题目点拨】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.7、C【解题分析】
解不等式得出集合A,根据交集的定义写出A∩B.【题目详解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故选C.【题目点拨】本题考查了解不等式与交集的运算问题,是基础题.8、D【解题分析】
可求出集合,,然后进行并集的运算即可.【题目详解】解:,;.故选.【题目点拨】考查描述法、区间的定义,对数函数的单调性,以及并集的运算.9、B【解题分析】
利用复数的代数运算法则化简即可得到结论.【题目详解】由,得,所以,.故选:B.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.10、A【解题分析】
由,可得以及,而,代入即可得到答案.【题目详解】设公差为d,则解得,所以.故选:A.【题目点拨】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.11、B【解题分析】
化简得到z=a-1+a+1【题目详解】z=1+ia+i=a-1+a+1i为纯虚数,故a-1=0故选:B.【题目点拨】本题考查了根据复数类型求参数,意在考查学生的计算能力.12、D【解题分析】
设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【题目详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【题目点拨】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,,从而可求得,得斜率.【题目详解】由得,即联立得解得或,∴.故答案为:.【题目点拨】本题考查直线与抛物线相交,考查向量的线性运算的坐标表示.直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法.14、【解题分析】
将其转化为几何意义,然后根据最值的条件求出最大值【题目详解】由化简得,又实数,图形为圆,如图:,可得,则由几何意义得,则,为求最大值则当过点或点时取最小值,可得所以的最大值是【题目点拨】本题考查了二元最值问题,将其转化为几何意义,得到圆的方程及斜率问题,对要求的二元二次表达式进行化简,然后求出最值问题,本题有一定难度。15、【解题分析】
令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【题目详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【题目点拨】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.16、【解题分析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【题目详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.【题目点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);.;(2)【解题分析】
(1)根据题意,知,且,令和即可求出,,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【题目详解】解:(1)由题可知,,且,当时,,则,当时,,,由已知可得,且,∴的通项公式:.(2)设,则,所以,,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【题目点拨】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.18、(1)(2)【解题分析】
(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2)由的几何意义得,.将代入抛物线C的方程,利用韦达定理,,即可求得结果.【题目详解】(1)因为,,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,,所以,由的几何意义得,.【题目点拨】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.19、(Ⅰ).(Ⅱ)见解析.【解题分析】
(Ⅰ)人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;(Ⅱ)根据题意,随机变量,列出分布列,根据公式求出期望即可.【题目详解】(Ⅰ)设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福(Ⅱ)根据题意,随机变量,的可能的取值为;;;所以随机变量的分布列为:所以的期望【题目点拨】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型.20、(1);(2).【解题分析】
(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【题目详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【题目点拨】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.21、(1),;(2)【解题分析】
(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【题目详解】(1)由得:,,即,解得,.(2)的图像与直线及围成的四边形,,,,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【题目点拨】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.22、(1);(2).【解题分析】
(1)以分别为轴,轴,轴,建立空间直角坐标系,设底面正方形边长为再求解与平面的法向量,继而求得直线与平面所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 院感相关知识与职业暴露
- 金华浙江金华市体育局下属事业单位金华市体育产业指导中心招聘笔试历年参考题库附带答案详解
- 职业健康与员工职业发展:医疗绩效评估的健康指标
- 芜湖安徽芜湖无为市融媒体中心招聘采编人员笔试历年参考题库附带答案详解
- 盐城2025年江苏盐城响水县卫健系统事业单位招聘备案制工作人员23人笔试历年参考题库附带答案详解
- 泸州四川泸州市江阳区教研培训中心考调工作人员4人笔试历年参考题库附带答案详解
- 无锡2025年江苏无锡江阴市文体广电和旅游局下属事业单位招聘6人(长期)笔试历年参考题库附带答案详解
- 惠州2025年广东惠州市中心人民医院第三批临聘人员招聘9人笔试历年参考题库附带答案详解
- 平顶山2025年河南平顶山市湛河区招聘中小学幼儿园教师120人笔试历年参考题库附带答案详解
- 安徽2025年安徽医科大学第四批科研助理岗位招聘笔试历年参考题库附带答案详解
- 财务共享运营管理制度
- 文物基础知识题库单选题100道及答案
- 工程项目管理(第二版)丁士昭主编的课后习题及答案
- 2025年河南省中招理化生实验操作考试ABCD考场评分表
- 2024年吉林省高职高专院校单独招生统一考试数学试题
- 四川省成都市邛崃市2024-2025学年九年级上学期期末化学试题(含答案)
- 食品行业停水、停电、停汽时应急预案
- MEMRS-ECG心电网络系统使用说明书
- 美国变压器市场深度报告
- 建设工程第三方质量安全巡查标准
- 乳化液处理操作规程
评论
0/150
提交评论